Theory of Quantum Transport in Metallic and Hybrid Nanostructures

  • Andreas Glatz
  • Veniamin I. Kozub
  • Valerii M. Vinokur
Conference proceedings

Part of the NATO Science Series book series (NAII, volume 230)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Coherence and Correlation Effects

    1. Front Matter
      Pages 1-1
    2. Amnon Aharony, Ora Entin-Wohlman, Yoseph Imry
      Pages 3-8
    3. Robert S. Whitney, Yuriy Makhlin, Alexander Shnirman, Yuval Gefen
      Pages 9-23
  3. Quantum Mesoscopic Phenomena

    1. Front Matter
      Pages 25-25
    2. I. S. Beloborodov, K. B. Efetov, A. V. Lopatin, V. M. Vinokur
      Pages 27-37
    3. S. Urazhdin, Norman O. Birge, W. P. Pratt Jr., J. Bass
      Pages 39-45
    4. Zhigang Jiang, José Aumentado, Wolfgang Belzig, Venkat Chandrasekhar
      Pages 57-66
    5. Vadim V. Cheianov, A. P. Dmitriev, V. Yu. Kachorovskii
      Pages 67-75
    6. Ora Entin-Wohlman, Yoseph Imry, Amnon Aharony
      Pages 77-82
    7. L. I. Glazman, M. Pustilnik, E. G. Mishchenko, A. V. Andreev
      Pages 119-127
    8. Yaroslav Tserkovnyak, Bertrand I. Halperin, Ophir M. Auslaender, Amir Yacoby
      Pages 129-140
    9. I. V. Gornyi, D. G. Polyakov
      Pages 141-146
    10. D. E. Feldman, S. Scheidl, V. M. Vinokur
      Pages 147-155
  4. Superconductivity in Nanostructures

    1. Front Matter
      Pages 157-157
    2. J. Y. Gu, Ya. B. Bazaliy, S. D. Bader, C. Y. You
      Pages 159-171
    3. L. Crétinon, A. Gupta, N. Moussy, B. Pannetier, H. Courtois
      Pages 173-186
    4. A. Yu. Aladyshkin, A. I. Buzdin, A. A. Fraerman, A. S. Mel'nikov, D. A. Ryzhov, A. V. Sokolov
      Pages 209-214
    5. I. V. Krive, L. Y. Gorelik, R. I. Shekhter, M. Jonson
      Pages 215-228
    6. F. S. Bergeret, A. F. Volkov, K. B. Efetov
      Pages 229-238
  5. Noise and Fluctuation Phenomena

    1. Front Matter
      Pages 240-240
    2. E. V. Bezuglyi, E. N. Bratus, V. S. Shumeiko, V. M. Vinokur
      Pages 241-255
    3. B. Reulet, J. Senzier, L. Spietz, C. M. Wilson, D. E. Prober
      Pages 277-282
  6. Single Electron Physics

    1. Front Matter
      Pages 290-290
    2. N. B. Kopnin, A. S. Mel'nikov, V. M. Vinokur
      Pages 291-295
    3. L. Y. Gorelik, S. I. Kulinich, R. I. Shekhter, M. Jonson, V. M. Vinokur
      Pages 307-319
  7. Back Matter
    Pages 321-322

About these proceedings


A new science emerges at the intersection of modern physics, computer s- ence,andmaterialscience. Thestruggletofurtherminiaturizeisputtingna- technology to the verge of creating single-electron and/or single-spin devices that operate by moving a single electron (spin) and can serve as transistors, memory cells, and for logic gates. These devices take advantage of quantum physics that dominates nanometer size scales. The devices that utilize met- based hybrid nanostructures may possess signi?cant advantages over those exploiting purely semiconducting materials. First, the chemistry of metals is typically simpler than that of semiconductors. Second, the electric properties of metals are much less sensitive to the structural defects and impurities than those of semiconductors. Next, metallic devices allow better electric and th- mal contacts. Another important plus point is that in metals the electron de Broigle wavelength is smaller by many orders of magnitude as compared to that in semiconductors. This makes metallic devices more promising with respect to their size - down to the size of an atom. Further, high bulk and interface thermal conductance in metallic devices are bene?cial for the heat withdraw. And, last but by no means the least, the high electron velocity in metals promises to accelerate enormously operation rates with respect to those in semiconductor-based devices. The ?nal note is that metals can - hibit strong ferromagnetism and/or superconductivity.


Chemistry Experiment Josephson junction Mathematics NATO Physics Science Semiconductor Series II Superconductor magnetic field

Editors and affiliations

  • Andreas Glatz
    • 1
  • Veniamin I. Kozub
    • 2
  • Valerii M. Vinokur
    • 3
  1. 1.Argonne National LaboratoryUSA
  2. 2.Ioffe InstituteRASRussia
  3. 3.Argonne National LaboratoryUSA

Bibliographic information