Practical Use of Mathcad®

Solving Mathematical Problems with a Computer Algebra System

  • Hans Benker

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Hans Benker
    Pages 1-13
  3. Hans Benker
    Pages 14-19
  4. Hans Benker
    Pages 20-31
  5. Hans Benker
    Pages 32-43
  6. Hans Benker
    Pages 44-53
  7. Hans Benker
    Pages 54-71
  8. Hans Benker
    Pages 72-78
  9. Hans Benker
    Pages 79-88
  10. Hans Benker
    Pages 89-101
  11. Hans Benker
    Pages 102-128
  12. Hans Benker
    Pages 129-132
  13. Hans Benker
    Pages 133-134
  14. Hans Benker
    Pages 135-148
  15. Hans Benker
    Pages 149-153
  16. Hans Benker
    Pages 154-184
  17. Hans Benker
    Pages 185-223
  18. Hans Benker
    Pages 224-248
  19. Hans Benker
    Pages 249-285
  20. Hans Benker
    Pages 286-314
  21. Hans Benker
    Pages 315-337
  22. Hans Benker
    Pages 338-347
  23. Hans Benker
    Pages 348-357
  24. Hans Benker
    Pages 358-382
  25. Hans Benker
    Pages 383-400
  26. Hans Benker
    Pages 401-430
  27. Hans Benker
    Pages 431-450
  28. Hans Benker
    Pages 451-486
  29. Hans Benker
    Pages 487-489
  30. Back Matter
    Pages 490-505

About this book


This book, which is a rrMsion and extension of the original edition publi­ shed in 1996 (see [2D with the German title Mathematik mit MA'nfCAD (Mathematics Using MA'nfCAD), discusses the use of the program system MAlHCAD® to solve mathematical problems with computers. The book is based on the current MA'nfCAD Version 8 Professional for WINDOWS 95/98 (see [5D. Whereas MAlHCAD and MATLAB (see [4D were originally conceived as purely systems for numerical mathematical calculations, the more recent versions of both products have licensed a minimum variant of the symbolic processor of the MAPLE computer algebra system for exact (symbolic) calcu­ lations. Thus, MAlHCAD has been developed to be an equal partner to the estab­ lished computer algebra systems AXIOM, DERIVE, MACSYMA, MAPLE, MA­ lHEMATICA, MuPAD and REDUCE. However, because these systems con­ tain numerical methods as well, they are no longer just pure computer alge­ bra systems. Consequently, MAlHCAD can also be deSignated as being a computer alge­ bra system (or just: system). MATHCAD possesses some advantages: • Better numerical capabilities more than compensate for the somewhat limited capabilities provided for exact (symbolic) calculations. • The calculations are performed in the MAlHCAD worksheet using the usual mathematical symbols (standard notation). • Thanks to the superior layout capabilities in the worksheet, MAlHCAD can be used to create treatises directly. • All calculations can be performed using units of measurement.


Extension Ringe Variable algorithms calculus control geometry optimization simulation statistics

Authors and affiliations

  • Hans Benker
    • 1
  1. 1.Fachbereich Mathematik und InformatikMartin-Luther-UniversitätHalle (Saale)Germany

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidleberg 1999
  • Publisher Name Springer, London
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-85233-166-5
  • Online ISBN 978-1-4471-0539-8
  • Buy this book on publisher's site