Computational Electronics

Semiconductor Transport and Device Simulation

  • K. Hess
  • J. P. Leburton
  • U. Ravaioli

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Drift-Diffusion Simulation

    1. Front Matter
      Pages 1-1
    2. M. R. Pinto, W. M. Coughran Jr., C. S. Rafferty, R. K. Smith, E. Sangiorgi
      Pages 3-13
    3. Emad Fatemi, Carl L. Gardner, Joseph W. Jerome, Stanley Osher, Donald J. Rose
      Pages 27-32
    4. Ilhun Son, Ting-wei Tang, Alexander Eydeland
      Pages 33-36
    5. G. F. Carey, J. Schmidt, M. Sharma
      Pages 37-41
    6. Douglas A. Teeter, Jack R. East, Richard K. Mains, George I. Haddad
      Pages 43-46
    7. P. A. Blakey, X. L. Wang, C. M. Maziar, P. A. Sandborn
      Pages 51-54
    8. D. L. Woolard, M. A. Stroscio, M. A. Littlejohn, R. J. Trew, H. L. Grubin
      Pages 59-62
    9. J. Zhou, A. M. Kriman, D. K. Ferry
      Pages 63-66
  3. Monte Carlo Simulation — Boltzmann Equation

    1. Front Matter
      Pages 67-67
    2. M. A. Littlejohn, J. L. Pelouard, W. C. Koscielniak, D. L. Woolard
      Pages 69-74
    3. D. K. Ferry, A. M. Kriman, M. J. Kann, H. Hida, S. Yamaguchi
      Pages 75-80
    4. C. J. Stanton, D. W. Bailey
      Pages 81-86
    5. Steven E. Laux, Massimo V. Fischetti
      Pages 87-92
    6. Kevin F. Brennan, Yang Wang, Duke H. Park
      Pages 97-105
    7. R. P. Joshi, K. M. Connolly, S. El-Ghazaly, R. O. Grondin
      Pages 111-114
    8. Sanjay A. Khan, Ronald J. Gutmann
      Pages 115-118
    9. S. Krishnamurthy, M. van Schilfgaarde
      Pages 119-122
    10. J. Bude, K. Hess, G. J. Iafrate
      Pages 131-136
    11. Udaya A. Ranawake, Patrick Lenders, Stephen M. Goodnick
      Pages 137-140
    12. T. Yamada, A. M. Kriman, D. K. Ferry
      Pages 149-152
    13. Christopher H. Lee, Umberto Ravaioli
      Pages 169-172
    14. V. V. Mitin, M. P. Shaw, V. M. Ivastchenko, K. F. Wu
      Pages 173-176
    15. D. Jovanovic, S. Briggs, J. P. Leburton
      Pages 177-180
  4. Quantum Transport

About this book


Large computational resources are of ever increasing importance for the simulation of semiconductor processes, devices and integrated circuits. The Workshop on Computational Electronics was intended to be a forum for the dis­ cussion of the state-of-the-art of device simulation. Three major research areas were covered: conventional simulations, based on the drift-diffusion and the hydrodynamic models; Monte Carlo methods and other techniques for the solution of the Boltzmann transport equation; and computational approaches to quantum transport which are relevant to novel devices based on quantum interference and resonant tunneling phenomena. Our goal was to bring together researchers from various disciplines that contribute to the advancement of device simulation. These include Computer Sci­ ence, Electrical Engineering, Applied Physics and Applied Mathematics. The suc­ cess of this multidisciplinary formula was proven by numerous interactions which took place at the Workshop and during the following three-day Short Course on Computational Electronics. The format of the course, including a number of tutorial lectures, and the large attendance of graduate students, stimulated many discussions and has proven to us once more the importance of cross-fertilization between the different disciplines.


Computer Laser Signal Simulation Transistor electronics field-effect transistor heterojunction bipolar transistor metal semiconductor field-effect transistor model modeling numerical analysis numerical methods

Editors and affiliations

  • K. Hess
    • 1
  • J. P. Leburton
    • 1
  • U. Ravaioli
    • 1
  1. 1.Beckman InstituteUniversity of IllinoisUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag US 1991
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4419-5122-9
  • Online ISBN 978-1-4757-2124-9
  • Series Print ISSN 0893-3405
  • Buy this book on publisher's site