Strict Finitism and the Logic of Mathematical Applications

  • Feng Ye

Part of the Synthese Library book series (SYLI, volume 355)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Feng Ye
    Pages 1-33
  3. Feng Ye
    Pages 35-78
  4. Feng Ye
    Pages 79-112
  5. Feng Ye
    Pages 113-123
  6. Feng Ye
    Pages 125-147
  7. Feng Ye
    Pages 149-169
  8. Feng Ye
    Pages 171-215
  9. Feng Ye
    Pages 217-266
  10. Back Matter
    Pages 267-272

About this book


This book intends to show that radical naturalism (or physicalism), nominalism and strict finitism account for the applications of classical mathematics in current scientific theories. The applied mathematical theories developed in the book include the basics of calculus, metric space theory, complex analysis, Lebesgue integration, Hilbert spaces, and semi-Riemann geometry (sufficient for the applications in classical quantum mechanics and general relativity). The fact that so much applied mathematics can be developed within such a weak, strictly finitistic system, is surprising in itself. It also shows that the applications of those classical theories to the finite physical world can be translated into the applications of strict finitism, which demonstrates the applicability of those classical theories without assuming the literal truth of those theories or the reality of infinity.

Both professional researchers and students of philosophy of mathematics will benefit greatly from reading this book.


Constructive Mathematics Constructivism Elementary Recursive Arithmetic Finitism Foundations of Mathematics Naturalism Nominalism Philosophy of Mathematics Physicalism Strict Finitism

Authors and affiliations

  • Feng Ye
    • 1
  1. 1., Department of PhilosophyPeking UniversityBeijingChina, People's Republic

Bibliographic information