Advertisement

Socionics pp 68-83 | Cite as

Building Scalable Virtual Communities — Infrastructure Requirements and Computational Costs

  • Omer F. Rana
  • Asif Akram
  • Steven J. Lynden
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3413)

Abstract

The concept of a “community” is often an essential feature of many existing scientific collaborations. Collaboration networks generally involve bringing together participants who wish to achieve some common outcome. Scientists often work in informal collaborations to solve complex problems that require multiple types of skills. Increasingly, scientific collaborations are becoming interdisciplinary—requiring participants who posses different skills to come together. Such communities may be generally composed of participants with complimentary or similar skills—who may decide to collaborate to more efficiently solve a single large problem. If such a community wishes to utilise computational resources to undertake their work, it is useful to identify metrics that may be used to characterise their collaboration. Such metrics are useful to identify particular types of communities, or more importantly, particular features of communities that are likely to lead to successful collaborations as the number of participants (or the resources they are sharing) increases.

Keywords

Multiagent System Communication Cost Mobile Agent Autonomous Agent Service Discovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernard, H.R., Kilworth, P.D., Evans, M.J., McCarthy, C., Selley, G.A.: Studying social relations cross-culturally. Ethnology 2, 155–179 (1988)CrossRefGoogle Scholar
  2. 2.
    Brooks, C.H., Durfee, E.H.: Congregation Formation in Multi-agent Systems. Journal of Autonomous Agents and Multi-Agent Systems 7(1-2) (Special Issue) (2003)Google Scholar
  3. 3.
    Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid Computing , PhD Thesis, Monash University, Australia,(2002), Available at: http://www.cs.mu.oz.au/raj/thesis/
  4. 4.
    Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., Kesselman, C., Kunst, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H., Stockinger, K., Tierney, B.: Giggle: A Framework for Constructing Scalable Replica Location Services. In: Proceedings of ACM/IEEE Supercomputing 2002, SC2002 (November 2002)Google Scholar
  5. 5.
    Comellas, F., Ozón, J., Peters, J.G.: Deterministic Small-World Communication Networks. Information Processing Letters 76(1-2), 83–90 (2000), Available at: http://citeseer.nj.nec.com/comellas00deterministic.html CrossRefMathSciNetGoogle Scholar
  6. 6.
    Czerwinski, S.E., Zhao, B.Y., Hodes, T.D., Joseph, A.D., Katz, R.H.: An Architecture for a Secure Service Discovery Service. In: Proceedings of Mobile Computing and Networking, pp. 24–35 (1999)Google Scholar
  7. 7.
    The DZero Experiment, Fermi National Accelerator Laboratory, Chicago, US. See Web site at: http://www-d0.fnal.gov/
  8. 8.
    Fararo, T.J., Sunshine, M.: A study of a biased Friendship Network. Syracuse University Press, Syracuse (1964)Google Scholar
  9. 9.
    Fischer, K., Schillo, M., Siekmann, J.: Holonic Multiagent Systems: The Foundation for the Organisation of Multiagent Systems. In: Mařík, V., McFarlane, D.C., Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Greaves, M., Holback, H., Bradshaw, J.: What Is a Conversation Policy? In: Proceedings of workshop on Specifying and Implementing Conversation Policies, at third annual conference on Autonomous Agents (May 1999)Google Scholar
  11. 11.
    Iamnitchi, A., Ripeanu, M., Foster, I.: Locating Data in (Small-World?) Peer-to-Peer Scientific Collaborations. In: Workshop on Peer-to-Peer Systems, Cambridge, Massachusetts (March 2002)Google Scholar
  12. 12.
    Kasturirangan, R.: Multiple Scales in Small-World Networks. AIM-1663 (1999)Google Scholar
  13. 13.
    Ketchpel, S.: Forming Coalitions in the Face of Uncertain Rewards. In: Proceedings of National Conference on AI, Seattle, WA, pp. 414–419 (1994)Google Scholar
  14. 14.
    Kleinberg, J.: Small-World Phenomena and the Dynamics of Information. In: Proceedings of Neural Information Processing Systems (2001)Google Scholar
  15. 15.
    Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An Architecture for Global-scale Persistent Storage. In: Proceedings of ACM ASPLOS (November 2000)Google Scholar
  16. 16.
    Lynden, S.J.: Coordination of FIPA compliant software agents using utility function assignment., PhD Thesis, Department of Computer Science, Cardiff University (2003)Google Scholar
  17. 17.
    Lynden, S.J., Rana, O.F.: Coordinated Learning to support Resource Management in Computational Grids. In: 2nd IEEE International Conference on Peer-2-Peer Computing, Linkoping, Sweden, September 2002, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  18. 18.
    Malsch, T.: Naming the Unnameable: Socionics or the Sociological Turn of/to Distributed Artificial Intelligence. Journal of Autonomous Agents andMulti-Agent Systems 4, 155–186 (2001)CrossRefGoogle Scholar
  19. 19.
    Mariolis, P.: Interlocking directorates and control of corporations: The theory of bank control. Social Sciences Quarterly 56, 425–439 (1975)Google Scholar
  20. 20.
    Newman, M.E.J.: Who is the Best Connected Scientist? A Study of Scientific Co-authorship Networks. Phys. Rev. E 64 (2001)Google Scholar
  21. 21.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. National. Academy of Sciences, USA, 404–409 (2001)Google Scholar
  22. 22.
    Panzarasa, P., Jennings, N.R., Norman, T.J.: Formalizing Collaborative Decisionmaking and Practical Reasoning in Multi-agent Systems. Journal of Logic and Computation 11(6), 1–63 (2001)Google Scholar
  23. 23.
    Rana, O.F., Wagner, T., Greenberg, M.S., Purvis, M.K.: Infrastructure Issues and Themes for Scalable Multi-Agent Systems. In: Wagner, T.A., Rana, O.F. (eds.) AA-WS 2000. LNCS (LNAI), vol. 1887, p. 304. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Schillo, M., Fischer, K., Siekmann, J.: The Link between Autonomy and Organisation in Multiagent Systems. In: Mařík, V., McFarlane, D.C., Valckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 81–90. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Schimank, U.: From‘Clean’ Mechanisms to ‘Dirty’ Models:Methodological Perspectives of the Scalability of Actor Constellations. In: Fischer, K., Florian, M., Malsch, T. (eds.) Socionics. LNCS (LNAI), vol. 3413, pp. 15–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Shehory, O.: A Scalable Agent Location Mechanism. In: Proceedings of Agent Theories, Architectures, and Languages (ATAL) conference (1999)Google Scholar
  27. 27.
    Shehory, O., Kraus, S.: Methods for Task Allocation via Agent Coalition Formation. Artificial Intelligence 101, 165–200 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Sun, R., Peterson, T.: Multi-agent reinforcement learning: weighting and partitioning. Neural Networks (Elsevier Science) 12, 727–753 (1999)CrossRefGoogle Scholar
  29. 29.
    Universal Description, Discovery and Integration (UDDI),See Web site at http://www.uddi.org/, See details on UDDI and WSDL at http://www.webservices.org/
  30. 30.
    Watts, D., Strogatz, S.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  31. 31.
    Wolpert, D., Tumer, K.: An Introduction to Collective Intelligence. In: Bradshaw, J.M. (ed.) Handbook of Agent Technology. AAAI Press/MIT Press (1999)Google Scholar
  32. 32.
    Wolpert, D., Wheeler, K., Tumer, K.: General Principles of Learning-Based Multi-Agent Systems. In: Proceedings of third annual conference on Autonomous Agents (May 1999)Google Scholar
  33. 33.
    Woodside, M.: Scalability Metrics and Analysis of Mobile Agent Systems. In: Proceedings of Workshop on Infrastructure for Scalable Multi-Agent Systems, at 4th Annual Conference on Autonomous Agents (June 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Omer F. Rana
    • 1
  • Asif Akram
    • 1
  • Steven J. Lynden
    • 2
  1. 1.School of Computer ScienceCardiff UniversityUK
  2. 2.School of Computer ScienceUniversity of NewcastleUK

Personalised recommendations