Advertisement

Directed Synthesis of Biologically Interesting Heterocycles with Squaric Acid (3,4-Dihydroxy-3-cyclobutene-1,2-dione) Based Technology

  • Masatomi OhnoEmail author
  • Shoji Eguchi
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 6)

Abstract

A variety of methods for organic transformation starting from squaric acid have been developed in this decade. These are based on conversion of pseudoaromatic 3,4-dihydroxy -3-cyclobutene-1,2-dione into the more reactive 4-hydroxy-2-cyclobutenone by introduction of the required (or desired) functional groups followed by key ring transformation, the rearrangement being stimulated thermally or induced by a reactive intermediate. These strategies can construct a variety of bioactive heterocycles when functional groups contain heteroatoms or heterocycles. Interestingly, squaric acid is rendered as an acid part, for example, of an amino acid, and this bioisostere concept is extended to various heterocycle-containing squaramides (3,4-diamino-3-cyclobutene-1,2-dione derivatives) as bioactive conjugate compounds. This review article covers biologically interesting heterocyclic compounds accessible with the squaric acid based technology.

Bioisostere Cyclobutenone Electrocyclic reaction Reactive intermediate Squaric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    West R (1980) Oxocarbons. Academic, New York Google Scholar
  2. 2.
    Cerioni G, Janoschek R, Rappoport Z, Tidwell TT (1996) J Org Chem 61:6212 Google Scholar
  3. 3.
    Quiñonero D, Frontera A, Ballester P, Deyà PM (2000) Tetrahedron Lett 41:2001 Google Scholar
  4. 4.
    Quiñonero D, Grau C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Chem Eur J 8:433 Google Scholar
  5. 5.
    Zhou L, Zhang Y, Wu L, Li J (2000) J Mol Struct (Theochem) 497:137 Google Scholar
  6. 6.
    Davis AP, Draper SM, Dunner G, Ashton P (1999) Chem Commun 2265 Google Scholar
  7. 7.
    Terao H, Sugawara T, Kita Y, Sato N, Kaho E, Takeda S (2001) J Am Chem Soc 123:10468 Google Scholar
  8. 8.
    May E, Destro R, Gatti C (2001) J Am Chem Soc 123:12248 Google Scholar
  9. 9.
    Lim NC, Morton MD, Jenkins HA, Brückner C (2003) J Org Chem 68:9233 Google Scholar
  10. 10.
    Rotger MC, Pinã MN, Frontera A, Martorell G, Ballester P, Deyà PM, Costa A (2004) J Org Chem 69:2302 Google Scholar
  11. 11.
    Tomàs S, Prohens R, Vega M, Rotger MR, Deyà PM, Ballester P, Costa A (1996) J Org Chem 61:9394 Google Scholar
  12. 12.
    Prohens R, Rotger MR, Pinà MN, Deyà PM, Morey J, Ballester P, Costa A (2001) Tetrahedron Lett 42:4933 Google Scholar
  13. 13.
    Law KY (1993) Chem Rev 93:449 Google Scholar
  14. 14.
    Ajayaghosh A (2003) Chem Soc Rev 32:181 Google Scholar
  15. 15.
    Hyodo Y, Nakazumi H, Yagi S, Nakai K (2001) J Chem Soc Perkin Trans 1 2823 Google Scholar
  16. 16.
    Ashweil GJ, Jefferies G, Hamilton DG, Lynch DE, Roberts MPS, Bahra GS, Brown CR (1995) Nature 375:385 Google Scholar
  17. 17.
    Liebeskind LS, Yu MS, Yu RH, Wang L, Hagen KS (1993) J Am Chem Soc 115:9048 Google Scholar
  18. 18.
    Wang J, Jiang X, Chen M, Hu Y, Hu H (2001) J Organometal Chem 629:213 Google Scholar
  19. 19.
    Moore HW, Decker OHW (1986) Chem Rev 86:821 Google Scholar
  20. 20.
    Liebeskind LS (1989) Tetrahedron 45:3053 Google Scholar
  21. 21.
    Moore HW, Yerxa BR (1992) Chemtracts Org Chem 5:273 Google Scholar
  22. 22.
    Bottari PQ, Battiste MA (1998) Cyclobutenediones as versatile four-carbon synthons in organic synthesis. In: Hudlicky T (ed) Organic synthesis: theory and applications, vol 4. JAI, Greenwich, p 79 Google Scholar
  23. 23.
    Ohno M, Yamamoto Y, Eguchi S (1998) Synlett 1167 Google Scholar
  24. 24.
    Pirrung MC, Nauhaus SK (1996) J Org Chem 61:2592 Google Scholar
  25. 25.
    Zhou H, Lü S, Xie R, Chan ASC, Yang T (2001) Tetrahedron Lett 42:1107 Google Scholar
  26. 26.
    Zhang J, Zhou H, Lü S, Luo M, Xie R, Choi MCK, Zhou Z, Chan ASC, Yang T (2001) Tetrahedron Asymm 12:1907 Google Scholar
  27. 27.
    Shimizu I (1991) J Syn Org Chem Jpn [Yuki Gosei Kagaku Kyokaishi] 53:330 Google Scholar
  28. 28.
    Liu H, Tomooka CS, Moore HW (1997) Syn Commun 27:2177 Google Scholar
  29. 29.
    Liu H, Tomooka CS, Xu SL, Yerxa BR, ZSullivan RW, Moore HW (1998) Org Syn 76:189 Google Scholar
  30. 30.
    Kraus JL (1985) Tetrahedron Lett 26:1867 Google Scholar
  31. 31.
    Reed MW, Pollart DJ, Perri ST, Foland LD, Moore HW (1988) J Org Chem 53:2477 Google Scholar
  32. 32.
    Liebeskind LS, Fengl RW, Wirtz R, Shawe TT (1988) J Org Chem 53:6382 Google Scholar
  33. 33.
    Gayo LW, Winters MP, Moore HW (1992) J Org Chem 57:6896 Google Scholar
  34. 34.
    Liebeskind LS, Fengl RW (1990) J Org Chem 55:5359 Google Scholar
  35. 35.
    Krysan DJ, Gurski A, Liebeskind LS (1992) J Am Chem Soc 114:1412 Google Scholar
  36. 36.
    Edwards JP, Krysan DJ, Liebeskind LS (1993) J Am Chem Soc 115:9868 Google Scholar
  37. 37.
    Liebeskind LS, Wang JY (1993) Tetrahedron 49:5461 Google Scholar
  38. 38.
    Sidduri A, Budries N, Laine RM, Knochel P (1992) Tetrahedron Lett 33:7515 Google Scholar
  39. 39.
    Shinada T, Ooyama Y, Hayashi K, Ohfune Y (2002) Tetrahedron Lett 43:6755 Google Scholar
  40. 40.
    Ohno M, Yamamoto Y, Shirasaki Y, Eguchi S (1993) J Chem Soc Perkin Trans 1:263 Google Scholar
  41. 41.
    Yamamoto Y, Nunokawa K, Okamoto K, Ohno M, Eguchi S (1995) Synthesis, p 571 Google Scholar
  42. 42.
    Yamamoto Y, Ohno M, Eguchi S (1996) Bull Chem Soc Jpn 69:1353 Google Scholar
  43. 43.
    Tuedemann R, Turnbull P, Moore HW (1999) J Org Chem 64:4030 Google Scholar
  44. 44.
    Schmidt AH, Thiel SH, Gaschler O (1996) J Chem Soc Perkin Trans 1:495 Google Scholar
  45. 45.
    Schmidt AH, Kircher G, Maus S, Bach H (1996) J Org Chem 61:2085 Google Scholar
  46. 46.
    Krayushkin MM, Yarovenko VN, Semenov SL, Shirinyan VZ, Martynkin AY, Uzhinov BM (2002) Rus J Org Chem 38:1331 Google Scholar
  47. 47.
    Schmidt AH, Lechler KO, Pretz T, Franz I (1996) J Chem Soc Perkin Trans 1:497 Google Scholar
  48. 48.
    Schmidt AH, Kircher G, Zylla J, Veit S (1999) J Chem Soc Perkin Trans 1:409 Google Scholar
  49. 49.
    Schmidt AH, Kircher G, Willems M (2000) J Org Chem 65:2379 Google Scholar
  50. 50.
    Periasamy M, Radhakrishnan U, Brunet JJ, Chauvin R, Zaizi AWE (1996) Chem Commun, p 1499 Google Scholar
  51. 51.
    Periasamy M, Rameshkumar C, Radhakrishnan U, Brunet JJ (1998) J Org Chem 63:4930 Google Scholar
  52. 52.
    Rameshkumar C, Periasamy M (2000) Organometallics 19:2400 Google Scholar
  53. 53.
    Periasamy M, Mukkanti A, Raj DS (2004) Organometallics 23:619 Google Scholar
  54. 54.
    Hamura T, Kakinuma M, Tsuji S, Matsumoto T, Suzuki K (2002) Chem Lett p 748 Google Scholar
  55. 55.
    Nguyen MH, Ha T-K, Moore RA, O'Ferrall RAM (1990) J Org Chem 55:3251 Google Scholar
  56. 56.
    McAllister MA, Tidwell TT (1994) J Am Chem Soc 116:7233 Google Scholar
  57. 57.
    Niwayama S, Kallel EA, Sheu C, Houk KN (1996) J Org Chem 61:2517 Google Scholar
  58. 58.
    Niwayama S, Kallel EA, Spellmeyer C, Sheu C, Houk KN (1996) J Org Chem 61:2813 Google Scholar
  59. 59.
    Niwayama S (1996) J Org Chem 61:640 Google Scholar
  60. 60.
    Dolbier WR Jr, Koroniak H, Houk KN, Sheu C (1996) Acc Chem Res 29:471 Google Scholar
  61. 61.
    Leigh WJ (1995) J Am Chem Soc 117:1688 Google Scholar
  62. 62.
    Ding W-J, Fang D-C (1999) J Mol Struct (Theochem) 468:119 Google Scholar
  63. 63.
    Regenhardt W, Schaumann E, Moore HW (2001) Synthesis p 1076 Google Scholar
  64. 64.
    Matyuya Y, Sasaki K, Nemoto H (2003) ARKIVOC (8)79 Google Scholar
  65. 65.
    Murakami M, Miyamoto Y, Ito Y (2001) J Am Chem Soc 123:6441 Google Scholar
  66. 66.
    Murakami M, Hasegawa M, Igawa H (2004) J Org Chem 69:587 Google Scholar
  67. 67.
    Peña-Cabrera E, Liebeskind LS (2002) J Org Chem 67:1689 Google Scholar
  68. 68.
    Zora M, Yucel B, Acikalin S (2003) Tetrahedron Lett 44:2237 Google Scholar
  69. 69.
    Miles DH, Payne M (2001) Tetrahedron 57:5769 Google Scholar
  70. 70.
    Magomedov NA, Riggiero PL, Tang Y (2004) J Am Chem Soc 126:1624 Google Scholar
  71. 71.
    Yamamoto Y, Nunokawa K, Ohno M, Eguchi S (1993) Synlett, p 781 Google Scholar
  72. 72.
    Paquette LA (1998) Eur J Org Chem, p 1709 Google Scholar
  73. 73.
    Liebeskind LS, Bombrun A (1994) J Org Chem 59:1149 Google Scholar
  74. 74.
    Zora M, Herndon JW (1994) J Org Chem 59:699 Google Scholar
  75. 75.
    Hamura T, Tsuji S, Matsumoto T, Suzuki K (2002) Chem Lett, p 750 Google Scholar
  76. 76.
    Hamura T, Morita M, Matsumoto T, Suzuki K (2003) Tetrahedron Lett 44:167 Google Scholar
  77. 77.
    Inoue M, Sato T, Hirama M (2003) J Am Chem Soc 125:10772 Google Scholar
  78. 78.
    Mingo P, Zhang S, Liebeskind LS (1999) J Org Chem 64:2145 Google Scholar
  79. 79.
    Birchler AG, Liu F, Liebeskind LS (1994) J Org Chem 59:7737 Google Scholar
  80. 80.
    Liebeskind LS, Wang J (1993) J Org Chem 58:3550 Google Scholar
  81. 81.
    Liu H, Gayo LM, Sullivan RW, Choi AYH, Moore HW (1994) J Org Chem 59:3284 Google Scholar
  82. 82.
    Yerxa BR, Yang K, Moore HW (1994) Tetrahedron 50:6173 Google Scholar
  83. 83.
    Zhang D, Llorente I, Liebeskind LS (1997) J Org Chem 62:4330 Google Scholar
  84. 84.
    Sun L, Liebeskind LS (1996) J Am Chem Soc 118:12473 Google Scholar
  85. 85.
    Sun L, Liebeskind LS (1997) Tetrahedron Lett 38:3663 Google Scholar
  86. 86.
    Sun L, Liebeskind LS (1995) J Org Chem 60:8194 Google Scholar
  87. 87.
    Taing M, Moore HW (1996) J Org Chem 61:329 Google Scholar
  88. 88.
    Xiong Y, Xia H, Moore HW (1995) J Org Chem 60:6460 Google Scholar
  89. 89.
    Sullivan RW, Coghlan VM, Munk SA, Reed MW, Moore HW (1994) J Org Chem 59:2276 Google Scholar
  90. 90.
    Onofrey TJ, Gomez D, Winters M, Moore HW (1997) J Org Chem 62:5658 Google Scholar
  91. 91.
    Trost BM, Thiel OR, Tsui H-C (2003) J Am Chem Soc 125:13155 Google Scholar
  92. 92.
    Hergueta A, Moore HW (1999) J Org Chem 64:5979 Google Scholar
  93. 93.
    Wipf P, Hopkins CR (1999) J Org Chem 64:6881 Google Scholar
  94. 94.
    Liebeskind LS, Zhang J (1991) J Org Chem 56:6379 Google Scholar
  95. 95.
    Shi X, Amin SR, Liebeskind LS (2000) J Org Chem 65:1650 Google Scholar
  96. 96.
    Shi X, Liebeskind LS (2000) J Org Chem 65:1665 Google Scholar
  97. 97.
    Heileman MJ, Moore HW (1998) Tetrahedron Lett 39:3643 Google Scholar
  98. 98.
    Turnbull P, Heileman MJ, Moore HW (1996) J Org Chem 61:2584 Google Scholar
  99. 99.
    Heileman MJ, Tiedemann R, Moore HW (1998) J Am Chem Soc 120:3801 Google Scholar
  100. 100.
    Tiedemann R, Heileman MJ, Moore HW (1999) J Org Chem 64:2170 Google Scholar
  101. 101.
    Hergueta AR, Moore HW (2002) J Org Chem 67:1388 Google Scholar
  102. 102.
    Varea T, Grancha A, Asensio G (1995) Tetrahedron 51:12373 Google Scholar
  103. 103.
    Paquette LA, Tae J (1998) J Org Chem 63:2022 Google Scholar
  104. 104.
    Tae J, Paquette LA (2000) Can J Chem 78:689 Google Scholar
  105. 105.
    Geng F, Liu J, Paquette LA (2002) Org Lett 4:71 Google Scholar
  106. 106.
    Geng F, Paquette LA (2002) J Am Chem Soc 124:9199 Google Scholar
  107. 107.
    MacDougall JM, Santora VJ, Verma SK, Turnbull P, Hernandez CR, Moore HW (1998) J Org Chem 63:6905 Google Scholar
  108. 108.
    MacDougall JM, Moore HW (1999) J Org Chem 64:7445 Google Scholar
  109. 109.
    Verma SK, Nguyen QH, MacDougall JM, Fleischer EB, Moore HW (2000) J Org Chem 65:3379 Google Scholar
  110. 110.
    Verma SK, Fleischer EB, Moore HW (2000) J Org Chem 65:8564 Google Scholar
  111. 111.
    Xu SL, Moore HW (1989) J Org Chem 54:6018 Google Scholar
  112. 112.
    Xu SL, Xia H, Moore HW (1991) J Org Chem 56:6094 Google Scholar
  113. 113.
    Yamamoto Y, Ohno M, Eguchi S (1994) Tetrahedron 50:7783 Google Scholar
  114. 114.
    Wang J, Jiang X, Chen M, Ge Z, Hu Y, Hu H (2001) J Chem Soc Perkin Trans 1:66 Google Scholar
  115. 115.
    Goudgaon NM, Shi J, Schinazi RF (1998) Tetrahedron Lett 39:1869 Google Scholar
  116. 116.
    Dillon JL, Gao Q, Dillon EA, Adams N (1997) Tetrahedron Lett 38:2231 Google Scholar
  117. 117.
    Lee KH, Moore HW (1995) J Org Chem 60:735 Google Scholar
  118. 118.
    Yamamoto Y, Ohno M, Eguchi S (1995) J Am Chem Soc 117:9653 Google Scholar
  119. 119.
    Aoyama Y, Konoike T, Kanda A, Naya N, Nakajima M (2001) Bioorg Med Chem Lett 11:1695 Google Scholar
  120. 120.
    Paquette LA, Sturino CF, Doussot P (1996) J Am Chem Soc 118:1996 Google Scholar
  121. 121.
    Sturino CF, Doussot P, Paquette LA (1997) Tetrahedron 53:8913 Google Scholar
  122. 122.
    Yamamoto Y, Ohno M, Eguchi S (1995) Tetrahedron Lett 36:5539 Google Scholar
  123. 123.
    Yamamoto Y, Noda M, Ohno M, Eguchi S (1997) J Org Chem 62:1292 Google Scholar
  124. 124.
    Yamamoto Y, Ohno M, Eguchi S (1996) J Org Chem 61:9264 Google Scholar
  125. 125.
    Hayes CJ, Pattenden G (1996) Tetrahedron Lett 37:271 Google Scholar
  126. 126.
    De Boeck B, Herbert N, Pattenden G (1998) Tetrahedron Lett 39:6971 Google Scholar
  127. 127.
    Ohno M, Oguri I, Eguchi S (1999) J Org Chem 64:8995 Google Scholar
  128. 128.
    Ohno M, Noda M, Yamamoto Y, Eguchi S (1999) J Org Chem 64:707 Google Scholar
  129. 129.
    Zora M, Yucel B, Peynircioglu B (2002) J Organomet Chem 656:11 Google Scholar
  130. 130.
    Huffman MA, Liebeskind LS (1993) J Am Chem Soc 115:4895 Google Scholar
  131. 131.
    Gaviña F, Costero AM, Andreu MR, Carda M, Luis SV (1988) J Am Chem Soc 110:4017 Google Scholar
  132. 132.
    Yokotsuji DLS, Dailey WP, Kende AS, Birzan L, Liu K (1995) J Phy Chem 99:15870 Google Scholar
  133. 133.
    Campbell EF, Park AK, Kinney WA, Fengl RW, Liebeskind LS (1995) J Org Chem 60:1470 Google Scholar
  134. 134.
    Shinada T, Hayashi K-I, Hayashi T, Yoshida Y, Horikawa M, Shinamoto K, Shigeri Y, Yumoto N, Ohfune Y (1999) Org Lett 1:1663 Google Scholar
  135. 135.
    Ishida T, Shinada T, Ohfune Y (2005) Tetrahedron Lett 46:311 Google Scholar
  136. 136.
    Sato K, Seio K, Sekine M (2002) J Am Chem Soc 124:12715 Google Scholar
  137. 137.
    Sato K, Tawarada R, Seio K, Sekine M (2004) Eur J Org Chem, p 2142 Google Scholar
  138. 138.
    Tietze LF, Arlt M, Beller M, Glüsenkamp K-H, Jähde E, Rajewsky MF (1991) Chem Ber 124:1215 Google Scholar
  139. 139.
    Bergh A, Magnusson B-G, Ohlsson J, Wellmar U, Nilsson UJ (2001) Glycoconj J 18:615 Google Scholar
  140. 140.
    Davis BG (1999) J Chem Soc Perkin Trans 1:3215 Google Scholar
  141. 141.
    Nitz M, Bundle DR (2001) J Org Chem 66:8411 Google Scholar
  142. 142.
    Kitov PI, Bundle DR (2001) J Chem Soc Perkin Trans 1:838 Google Scholar
  143. 143.
    Kitov PI, Shimizu H, Homans SW, Bundle DR (2003) J Am Chem Soc 125:3284 Google Scholar
  144. 144.
    Kitov PI, Bundle DR (2003) J Am Chem Soc 125:16271 Google Scholar
  145. 145.
    Vermeer HJ, Halkes KM, Albert van Kuik J, Kamerling JP, Vliegenthart JFG (2000) J Chem Soc Perkin Trans 1:2249 Google Scholar
  146. 146.
    Vermeer HJ, Kamerling JP, Vliegenthart JFG (2000) Tetrahedron Asym 11:539 Google Scholar
  147. 147.
    Lefeber DJ, Kamerling JP, Vliegenthart JFG (2001) Chem Eur J 7:4411 Google Scholar
  148. 148.
    Mawas F, Niggemann J, Jones C, Corbel MJ, Kamerling JP, Vliegenthart JFG (2002) Infection and Immunity 70:5107 Google Scholar
  149. 149.
    Zhang J, Yergey A, Kowalak J, Kováč P (1998) Carbohydr Res 313:15 Google Scholar
  150. 150.
    Chernyak A, Karavanov A, Ogawa Y, Kováč P (2001) Carbohydr Res 330:479 Google Scholar
  151. 151.
    Ma X, Saksena R, Chernyak A, Kováč P (2003) Org Biomol Chem 1:775 Google Scholar
  152. 152.
    Pozsgay V, Dubois EP, Pannell L (1997) J Org Chem 62:2832 Google Scholar
  153. 153.
    Blixt O, Norberg T (1999) Carbohydr Res 319:80 Google Scholar
  154. 154.
    Chernyak A, Oscarson S, Turek D (2000) Carbohydr Res 329:309 Google Scholar
  155. 155.
    Bergh A, Bhattacharyya S, Nilsson UJ (2002) Carbohydr Res 337:947 Google Scholar
  156. 156.
    Auzanneau F-I, Pinto BM (1996) Bioorg Med Chem 4:2003 Google Scholar
  157. 157.
    Wang JY, Chang AHC, Guttormsen H-K, Rosas AL, Kasper DL (2003) Vaccine 21:1112 Google Scholar
  158. 158.
    Merritt EA, Zhang Z, Pickens JC, Ahn M, Hol WGJ, Fan E (2002) J Am Chem Soc 124:8818 Google Scholar
  159. 159.
    Zhang Z, Merritt EA, Ahn M, Roach C, Hou Z, Verlinde CLMJ, Hol WGJ, Fan E (2002) J Am Chem Soc 124:812991 Google Scholar
  160. 160.
    Corsi DM, Elst LV, Muller RN, Bekkum H, Peters JA (2001) Chem Eur J 7:64 Google Scholar
  161. 161.
    Tevyashova A, Sztaricskai F, Batta G, Herczegh P, Jeney A (2004) Bioorg Med Chem Lett 14:4783 Google Scholar
  162. 162.
    Düffels A, Green LG, Ley SV, Miller AD (2000) Chem Eur J 6:1416 Google Scholar
  163. 163.
    Daghish M, Henning L, Findeisen M, Giesa S, Schumer F, Henning H, Beck-Sickinger AG, Welzel P (2002) Angew Chem Int Ed 41:2293 Google Scholar
  164. 164.
    Buchynskyy A, Kempin U, Vogel S, Henning L, Findeisen M, Müller D, Giesa S, Knoll H, Welzel P (2002) Eur J Org Chem p 1149 Google Scholar
  165. 165.
    Crescenzi V, Dentini M, de Nooy AEJ (2000) Polym Repr 41:718 Google Scholar
  166. 166.
    Kinney WA, Abou-Gharbia M, Garisson DT, Scmid J, Kowal DM, Bramlett DR, Miller TL, Tasse RP, Zaleska MM, Moyer JA (1998) J Med Chem 41:236 Google Scholar
  167. 167.
    Butera JA, Antane MM, Antane SA, Argentieri TM, Freeden C, Graceffa RF, Hirth BH, Jenkins D, Lennox JR, Matelan E, Norton NW, Quagliato D, Sheldon JH, Spinelli W, Warga D, Wojdan A, Woods M (2000) J Med Chem 43:1187 Google Scholar
  168. 168.
    Gilbert AM, Antane MM, Argentieri TM, Butera JA, Francisco GD, Freeden C, Gundersen EG, Graceffa RF, Herbst D, Hirth BH, Lennox JR, McFarlane G, Norton NW, Quagliato D, Sheldon JH, Warga D, Wojdan A, Woods M (2000) J Med Chem 43:1203 Google Scholar
  169. 169.
    Porter JR, Archibald SC, Childs K, Critchley D, Head JC, Linsley JM, Parton TAH, Robinson MK, Shock A, Taylor RJ, Warrellow GJ, Alexander RP, Langham B (2002) Bioorg Med Chem Lett 12:1051 Google Scholar
  170. 170.
    Brand S, de Candole BC, Brown JA (2003) Org Lett 5:2343 Google Scholar
  171. 171.
    Proudfoot JR (2002) Bioorg Med Chem Lett 12:1647 Google Scholar
  172. 172.
    Kato K, Jingu S, Ogawa N, Higuchi S (2000) J Chromatogr B 740:187 Google Scholar
  173. 173.
    Naito Y, Yoshikawa T, Matsuyama K, Yagi N, Arai M, Nakamura Y, Kaneko T, Yoshida N, Kondo M (1995) Eur J Pharm 294:47 Google Scholar
  174. 174.
    Srinivas NR, Shyu WC, Soong CW, Greene D (1998) J Pharm Sci 87:1170 Google Scholar
  175. 175.
    Arun KT, Epe B, Ramaiah D (2002) J Phys Chem B 106:11622 Google Scholar
  176. 176.
    Santos PF, Reis LV, Almeida P, Oliveira AS, Ferreira LFV (2003) J Photochem Photobiol A: Chemistry 160:159 Google Scholar
  177. 177.
    Oguz U, Akkaya EU (1997) Tetrahedron Lett 38:4509 Google Scholar
  178. 178.
    Ajayaghosh A, Arunkumar E, Daub J (2002) Angew Chem Int Ed 41:1766 Google Scholar
  179. 179.
    Kukrer B, Akkaya EU (1999) Tetrahedron Lett 40:9125 Google Scholar
  180. 180.
    Oswald B, Lehmann F, Simon L, Terpetschnig E, Wolfbeis OS (2000) Anal Biochem 280:272 Google Scholar
  181. 181.
    Oswald B, Patsenker L, Duschl J, Szmacinski H, Wolfbeis OS, Terpetschnig E (2000) Bioconjugate Chem 10:925 Google Scholar
  182. 182.
    Nakazumi H, Colyer CL, Kaihara K, Yagi S, Hyodo Y (2003) Chem Lett 32:804 Google Scholar

Authors and Affiliations

  1. 1.Department of Advanced Science and TechnologyToyota Technological InstituteNagoyaJapan
  2. 2.Department of Molecular Design & EngineeringGraduate School of Engineering, Nagoya UniversityNagoyaJapan

Personalised recommendations