Advertisement

Electrical Control Of Plant Morphogenesis

  • Cogălniceanu Gina Carmen
Chapter
  • 1.6k Downloads
Part of the Focus on Biotechnology book series (FOBI, volume 6)

Keywords

Somatic Embryo Pollen Tube External Electric Field Electric Treatment Pulse Electric Field Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wolpert, L. (1971) Positional information and pattern formation. Curr. Opin. Dev. Biol. 6: 183-224.Google Scholar
  2. [2]
    Wolpert, L. (1981) Positional information and pattern formation. Philos. Trans. R. Soc. London B. 295: 441-450.Google Scholar
  3. [3]
    Meinhardt, H. (1982) Models of Biological Pattern Formation. Academic Press, London.Google Scholar
  4. [4]
    Meinhardt, H. (1994). Biological pattern-formation new observations provide support for theoretical predictions. Bioessays 16: 627-632.PubMedGoogle Scholar
  5. [5]
    Meinhardt, H.; Koch, A.J. and Bernasconi, G. (1998) Models of pattern formation applied to plant development. In: Barabe, D. and Jean, R.V. (Eds.) Symmetry in Plants. World Scientific Publishing, Singapore; pp. 723-758.Google Scholar
  6. [6]
    Hedrich, R.; Stoeckel, H. and Takeda, K. (1990) Electrophysiology of the plasma membrane of higher plant cells: new insights from patch-clamp studies. In: Larsson, C. and Moller, I.M. (Eds.) The Plant Plasma Membrane. Springer-Verlag Berlin, Heidelberg; pp. 182-202.Google Scholar
  7. [7]
    Rinne, P.L.H. and van der Schoot, C. (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125: 1477-1485.PubMedGoogle Scholar
  8. [8]
    Scheres, B. and Berleth, T. (1998) Root development: new meanings for root canals? Curr. Opin. Plant Biol. 1: 32-36.PubMedGoogle Scholar
  9. [9]
    Jaffe, L.F. and Nuccitelli, R. (1977) Electrical controls of development. Ann. Rev. Biophys. Bioeng. 6: 445-476.Google Scholar
  10. [10]
    Shipley, A.M.; Feijó, J.A. (1999) The use of vibrating probe technique to study steady extracellular currents during pollen germination tube growth. In: Hayst, W. and Feinleib, M.E. (Eds.) Fertilization in Higher Plants. Springer-Verlag, Berlin Heidelberg, New York; pp. 235-252.Google Scholar
  11. [11]
    Thavarungkul, P. (1997) Vibrating probe measurement of ionic currents around developing embryo of oil palm (Elaeis guineensisJacq.). J. Exp. Bot. 48: 1647-1653.Google Scholar
  12. [12]
    Nuccitelli, R. and Jaffe, L.F. (1974) Spontaneous current pulses through developing fucoid eggs. Proc. Nat. Acad. Sci. USA 71: 4855-4859.PubMedGoogle Scholar
  13. [13]
    Brawley, S.H.; Wetherell, D.F. and Robinson, K.R. (1984) Electrical polarity in embryos of wild carrot precedes cotyledon differentiation. Proc. Natl. Acad. Sci. USA 81: 6064-6067.PubMedGoogle Scholar
  14. [14]
    Rathore, K.S.; Hodges, T.K. and Robinson, K.R. (1988) Ionic basis of currents in somatic embryos of Daucus carota.Planta 175: 280-289.PubMedGoogle Scholar
  15. [15]
    Weisenseel, M.H. and Jaffe, L.F. (1976) The major growth current through pollen tubes enters as K+and leaves H+. Planta 133: 1-7.PubMedGoogle Scholar
  16. [16]
    Feijó, J.A.; Malho, R. and Obermeyer, G. (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187: 155-167.Google Scholar
  17. [17]
    Weisenseel, M.H. (1979) Induction of polarity. In: Hayst, W. and Feinleib, M.E. (Eds.) Encyclopedia of Plant Physiology. Springer, Berlin; pp. 485-505.Google Scholar
  18. [18]
    Hamada, S.; Ezaki, S.; Hayashi, K.; Toko, K. and Yamafuji, K. (1992) Electric current precedes emergence of a lateral root in higher plants. Plant Physiol. 100: 614-619.PubMedPubMedCentralGoogle Scholar
  19. [19]
    Toko, K.; Hayashi, K. and Yamafuji, K. (1986) Spatio-temporal organization of electricity in biological growth. Trans. IEICE of Japan. 4: 485-487.Google Scholar
  20. [20]
    Toko, K.; Iiyama, S.; Tanaka, C.; Hayashi, K.; Yamafuji, K. and Yamafuji, K. (1987) Relation of growth process to spatial patterns of electric potential and enzyme activity in bean roots. Biophysical Chem. 27: 39-58.Google Scholar
  21. [21]
    Toko, K. and Yamafuji, K. (1988) Spontaneous formation of the spatial pattern of electric potential in biological systems. Ferroelectrics 86: 269-279.Google Scholar
  22. [22]
    Novak, B. and Bentrup, F.W. (1972) An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 103: 227-244.Google Scholar
  23. [23]
    Gorst, J.; Overall, R.L. and Wernicke, W. (1987) Ionic currents traversing cell clusters from carrot suspension culture reveal perpetuation of morphogenetic potential as distinct from induction of embryogenesis. Cell Differentiation 21: 101-109.PubMedGoogle Scholar
  24. [24]
    Rathore, K.S. and Robinson, K.R. (1989) Ionic currents around developing embryos of higher plants in culture. Biological Bulletin 176: 46-48.PubMedGoogle Scholar
  25. [25]
    Weisenseel, M.H.; Nucitelli, R. and Jaffe, L.F. (1975) Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66: 556-567.PubMedGoogle Scholar
  26. [26]
    Feijó, J.A.; Shipley, A.M. and Jaffe, L.M. (1994) Spatial and temporal patterns of electric and ionic currents around in vitro germinating pollen. In: Spanswick, R.; Lucas, W.J. and Dainty, J. (Eds.) XIII International Congress on Sexual Plant Reproduction. Abstract book, Vienna; pp. 40.Google Scholar
  27. [27]
    Pierson, E.; Miller, D.D.; Callaham, D.A.; Shiplez, A.M.; Rivers, B.A.; Cresti, M. and Hepler, P.R. (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815-1828.PubMedPubMedCentralGoogle Scholar
  28. [28]
    Weisenseel, M.H.; Dorn, A. and Jaffe, L.F. (1979) Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgareL.). Plant Physiol. 64: 512-518.PubMedPubMedCentralGoogle Scholar
  29. [29]
    Miller, A.L.; Shand, E. and Gow, N.A.R. (1988) Ion currents associated with root tips, emerging laterals and induced wound sites in Nicotiana tabacum: spatial relationship proposed between resulting electrical fields and phytophtoran zoospore infection. Plant Cell Environ. 11: 21-25.Google Scholar
  30. [30]
    Rathore, K.S.; Hotanry, K.B. and Robinson, K.R. (1990) A two-dimensional vibrating probe study of currents around lateral roots of Raphanus sativusdeveloping in culture. Plant Physiol. 92: 543-546.Google Scholar
  31. [31]
    Iiama, S.; Toko, K. and Yamafuji, K. (1985) Band structure of surface electric potential in growing roots. Biophys. Chem. 21: 285-295.Google Scholar
  32. [32]
    Ezaki, S.; Toko, K.; Yamafuji, K. and Tanaka, C. (1990) Electrical control of growth of the higher plant. Memoirs of the Faculty of Engineering Kyushu University. 50: 377-393.Google Scholar
  33. [33]
    Ezaki, S.; Toko, K. and Yamafuji, K. (1990b) Electrical stimulation on the growth of a root of the higher plant. Trans. IEICE of Japan. 73: 922-927.Google Scholar
  34. [34]
    Jaffe, L.F. (1980) Control of plant development by steady ionic currents. In: Spanswick, R.; Lucas, W.J. and Dainty, J (Eds.) Plant Membrane Transport: Current Conceptual Issues. Elsevier, New York; pp. 381-388.Google Scholar
  35. [35]
    Glaser, R. (1992) Current concepts of the interaction of weak electromagnetic fields with cells. Bioelectrochem. Bioenerg. 27: 255-268.Google Scholar
  36. [36]
    Berg, H. (1993) Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Bioelectrochem. Bioenerg. 31: 1-25.Google Scholar
  37. [37]
    Weaver, J.C. and Astumian, R.D. (1990) The response of living cells to very weak electric fields: the thermal noise limit. Science 247: 459-462.PubMedGoogle Scholar
  38. [38]
    Weaver, J.C. and Astumian, R.D. (1992) Estimates for ELF effects: noise-based thresholds and the number of experimental conditions required for empirical searches. Bioelectromagnetics Suppl. 1: 113 138.Google Scholar
  39. [39]
    Adey, W.R. (1990) Electromagnetic fields and the essence of living systems. In: Back, J. and Anderson, J. (Eds.) Modern Radio Science. Oxford University Press, UK; pp. 1-36.Google Scholar
  40. [40]
    Findl, E. (1987) Membrane transduction of low energy level fields and the Ca2 + hypothesis. In: Blank, M. and Findl, E. (Eds.) Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Plenum Publishing, New York; pp. 15-38.Google Scholar
  41. [41]
    McLeod, B.; Liboff, A.R. and Smith, S.D. (1992) Biological systems in transition: sensitivity to extremely low-frequency fields. Electro- and Magneto-Biology 11: 29-42.Google Scholar
  42. [42]
    Tenforde, T.S. (1993) Cellular and molecular pathways of extremely low frequency electromagnetic field interactions with living systems. In: Blank, M. (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco; pp. 1-8.Google Scholar
  43. [43]
    Tsong, T.; Chauvin, F. and Astumian, R.D. (1987) Interaction of membrane proteins with static and dynamic electric fields via electroconformational coupling. In: Blank, M. and Findl, E. (Eds.) Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Plenum Publishing, New York; pp. 187-201.Google Scholar
  44. [44]
    Tsong, T. (1992) Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochimica Biophysica Acta. 1113: 53-70.Google Scholar
  45. [45]
    Blank, M. (1987) The surface compartment model: a theory of ion transport focused on ionic processes in the electrical double layers at membrane protein surfaces. Biochimica Biophysica Acta. 906: 277-294.Google Scholar
  46. [46]
    Blank, M. and Goodman, R. (1988) An electrochemical model for the stimulation of biosynthesis by external electric fields. Bioelectrochem. Bioenerg. 19: 569-580.Google Scholar
  47. [47]
    Goldsworthy, A. and Rathore, K.S. (1985) The electrical control of growth in plant tissue cultures: the polar transport of auxin. J. Exp. Bot. 36: 1134-1141.Google Scholar
  48. [48]
    Rathore, K.S. and Goldsworthy, A. (1985) Electrical control of growth in plant tissue cultures. Bio/Technol. 3: 253-254.Google Scholar
  49. [49]
    Rathore, K.S. and Goldsworthy, A. (1985) Electrical control of shoot regeneration in plant tissue cultures. Bio/Technol. 3: 1107-1109.Google Scholar
  50. [50]
    Radu, M.; Cogalniceanu, G. and Brezeanu, A. (1994) Control of Nicotiana tabacumL. callus growth by weak alternating and pulsed electric field. Electro- Magneto-Biol. 13: 195-201.Google Scholar
  51. [51]
    Cogălniceanu, G.; Radu, M.; Fologea, D.; Moisoi, N. and Brezeanu, A. (1996) Electroenhancement of differentiation and morphogenesis in tobacco callus culture, In: Crăun, C. and Ardelean (Eds.) A Current Problems and Techniques in Cellular and Molecular Biology. Edit. Mirton. Timişoara 1: 567 570.Google Scholar
  52. [52]
    Cogalniceanu, G.; Radu, M.; Fologea, D.; Moisoi, N. and Brezeanu, A. (1998) Stimulation of tobacco shoot regeneration by alternating weak electric field. Bioelectrochem. Bioenerg. 44: 257-260.Google Scholar
  53. [53]
    Thavarungkul, P. and Kanchanapoom, K. (2002) Effect of applied currents to growth in oil palm (Elaeis guineensisJacq.) tissue cultures. Songklanakarin J. Sci Technol. 24: 283-291.Google Scholar
  54. [54]
    Goldsworthy, A. (1996) Electrostimulation of cells by weak electric currents. In: Lynch, P.T. and Davey, M.R. (Eds.) Electrical Manipulation of Cells. Chapman and Hall, New York; pp. 249-272.Google Scholar
  55. [55]
    Mina, M.G. and Goldsworthy, A. (1991) Changes in the electrical polarity of tobacco cells following the application of weak external currents. Planta 186: 104-108.PubMedGoogle Scholar
  56. [56]
    Cog⫮iceanu, G.; Radu, M.; Fologea, D. and Brezeanu, A. (1998) Are the electric field effects coupled with the hormonal reception of cells in plant callus culture? Roum. Biotechnol. Lett. 3: 201-206.Google Scholar
  57. [57]
    Trewavas, A. (1991) How do plant growth substances work? Plant Cell Environ. 14: 1-12.Google Scholar
  58. [58]
    Neumann, E. (1986) Digression on biochemical membrane reactivity in weak electromagnetic fields. Bioelectrochem. Bioenerg. 16: 565-567.Google Scholar
  59. [59]
    Berg, H. and Zhang, L. (1993) Electrostimulation in cell biology by low-frequency electromagnetic fields. Electro-and Magneto-Biol. 12: 147-163.Google Scholar
  60. [60]
    Stenz, H.G.; Wohlwend, B. and Weisenseel, M.H. (1998) Weak AC-electric fields promote root growth and ER abundance of root cap cells. Bioelectrochem. Bioenerg. 44: 261-269.Google Scholar
  61. [61]
    Tsong, T. and Astumian, R.D. (1986) Absorbtion and conversion of electric field energy by membrane bound ATP-ases. Bioelectrochem. Bioenerg. 15: 457-476.Google Scholar
  62. [62]
    Gransdorff, P. and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley – Interscience, Gordon.Google Scholar
  63. [63]
    Lowe, K.C.; Davey, M.R. and Power, J.B. (1996) Plant tissue culture: past, present and future. Plant Tissue Cult. Biotechnol. 2: 175-186.Google Scholar
  64. [64]
    Teissié, J. (2002) Membrane destabilizations supporting electropermeabilization. Cell. Mol. Biol. Lett. 7: 96-100.PubMedGoogle Scholar
  65. [65]
    Xinping, X. and Baojian, L. (1988) Fertile transgenic indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep. 13: 237-242.Google Scholar
  66. [66]
    Kloti, A.; Iglesiai, V.A.; Wunn, J.; Burkhardt, P.K.; Datta, S.K. and Potrykus, I. (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep.12: 671-675.PubMedGoogle Scholar
  67. [67]
    Arencibia, A.; Molina, P.R.; De la Riva, G. and Selman, H. (1995) Production of transgenic sugarcane (Saccharum officinarumL.) plants by intact cell electroporation. Plant Cell Rep.14: 305-309.PubMedGoogle Scholar
  68. [68]
    Chowrira, G.M.; Akella, V. and Lurquin, P.F. (1995) Electroporation-mediated gene transfer into intact nodal meristems in plants. Generating transgenic plants without in vitro tissue culture. Mol. Biotechnol. 3: 7-23.Google Scholar
  69. [69]
    Fologea, D.; Brezeanu, A.; Radu, M.; Cornea, P. and Vatafu, I. (1999) Gene transfer by electroporation into intact tobacco petiole tissue. Electro-and Magneto-Biology 18: 1-6.Google Scholar
  70. [70]
    De Padua, V.L.M.; Pestana, M.C.; Margis-Pinheiro, M. and Mansur, E. (2000) Electroporation of intact embryonic leaflets of peanut: gene transfer and stimulation of regeneration capacity. In Vitro Cell. Dev. Biol.- Plant 36: 374-378.Google Scholar
  71. [71]
    Tsong, T. (1991) Electroporation of cell membranes. Biophys. J. 60: 297-306.PubMedPubMedCentralGoogle Scholar
  72. [72]
    Lee, R.C. (1994) Characterization of non-linear electrical behaviour of lipid bilayer of cell membranes. In: Lin, J. C. (Ed.) Advances in Electromagnetic Fields in Living Systems. Vol.1, Plenum Press, New York; pp. 81-127.Google Scholar
  73. [73]
    Potter, H. (1988) Electroporation in biology: methods, applications and instrumentation. Anal. Biochem. Bioenerg. 174: 361-373.Google Scholar
  74. [74]
    Davey, M.R.; Blackhall, N.W.; Lowe, K.C. and Power, J.B. (1996) Stimulation of plant cell division and organogenesis by short-term, high-voltage electrical pulses. In: Lynch, P.T. and Davey, M.R. (Eds.) Electrical Manipulation of Cells. Chapman and Hall, New York; pp. 273-286.Google Scholar
  75. [75]
    Rech, E.L.; Ochatt, S.J.; Chand, P.K.; Power, J.B. and Davey, M.R. (1987) Electroenhancement of division of plant protoplast-derived cells. Protoplasma 141: 169-176.Google Scholar
  76. [76]
    Gupta, H.S.; Rech, E.L.; Cocking, E.C. and Davey, M.R. (1988) Electroporation and heat shock stimulate division of protoplasts of Penisetum squamulatum. J. Plant Physiol. 133: 457-459.Google Scholar
  77. [77]
    Mordhorst, A.P. and Lõrz, H. (1992) Electrostimulated regeneration of plantlets from protoplasts derived cell suspensions of barley (Hordeum vulgare). Physiol. Plant. 85: 289-294.Google Scholar
  78. [78]
    Ochatt, S.J.; Chand, P.K.; Rech, E.L.; Davey, M. and Power, J.B. (1988a) Electroporation-mediated improvement of plant regeneration from colt cherry (Prunus avium x Pseudocerasus) protoplasts. Plant Sci. 54: 165-169.Google Scholar
  79. [79]
    Ochatt, S.J.; Rech, E.L.; Davey, M. and Power, J.B. (1988b) Long-term effect of electroporation on enhancement of growth and plant regeneration of Colt cherry (Prunus aviumxpseudocerasus) protoplasts. Plant Cell Rep. 7: 393-395.PubMedGoogle Scholar
  80. [80]
    Chand, P.K.; Ochatt, S.J.; Rech, E.L.; Power, J.B. and Davey, M.R. (1988) Electroporation stimulates plant regeneration from protoplasts of the woody medicinal species Solanum dulcamaraL. J. Exp. Bot. 206: 1267-1274.Google Scholar
  81. [81]
    Barth, S.; Voeste, D.; Wingender, R. and Schnabl, H. (1993) Plantlet regeneration from electrostimulated protoplasts of sunflower (Helianthus annuus L.). Bot. Acta. 106: 220-222.Google Scholar
  82. [82]
    Rech, E.L.; Ochatt, S.J.; Chand, P.K.; Davey, M.R.; Mulligan, B.J. and Power, J.B. (1988) Electroporation increases DNA synthesis in cultured plant protoplasts. Bio/Technol. 6: 1091-1093.Google Scholar
  83. [83]
    Joersbo, M. and Brunstedt, J. (1990) Stimulation of protein synthesis in electroporated plant protoplasts. J. Plant Physiol. 136: 464-467.Google Scholar
  84. [84]
    Jones, B.; Lynch, P.T.; Power, J.B. and Davey, M.R. (1996) Electrofusion and electroporation equipment. In: Lynch, P.T. and Davey, M.R. (Eds.) Electrical Manipulations of Cells. Chapman and Hall, New York; pp. 1-14.Google Scholar
  85. [85]
    Puc, M.; Čorović, S.; Flistar, K.; Petrošek, M.; Nastran, J. and Miklavčič, D. (2004) Techniques of signal generation required for electropermeabilization. Survey of electropermeabilization devices. Bioelectrochemistry. 64: 113-124.PubMedGoogle Scholar
  86. [86]
    Dijak, M.; Smith, D.L.; Wilson, T.J. and Brown, D.C.W. (1986) Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep. 5: 468-470.PubMedGoogle Scholar
  87. [87]
    Montane, M.H. and Teissié, J. (1992) Electrostimulation of plant protoplast division. Part 1. Experimental results. Bioelectrochem. Bioenerg. 29: 59-70.Google Scholar
  88. [88]
    Dijak, M. and Simmonds, D.H. (1988) Microtubule organization during early direct embryogenesis from mesophyll protoplasts of Medicago sativaL. Plant Sci. 58: 183-191.Google Scholar
  89. [89]
    De Jong, A.J.; Schmidt, E.D.L. and De Vries, S.C. (1993) Early events in higher-plant embryogenesis. Plant Mol. Biol. 22: 367-377.Google Scholar
  90. [90]
    Gill, R.; Mishra, K.P. and Rao, P.S. (1987) Stimulation of shoot regeneration of Vigna aconitifolia by electrical control. Ann. Bot. 60: 399-403.Google Scholar
  91. [91]
    Cogalniceanu, G.; Carasan, M.; Radu, M.; Fologea, D. and Brezeanu, A. (2000) The influence of external electric field on the in vitro postcotyledonary development of Nicotiana tabacumL. cv. Xanthi seedlings. Roum. Biotechnol. Lett. 5: 45-54.Google Scholar
  92. [92]
    Cogălniceanu, G.; Radu, M.; Brezeanu, A. and Fologea, D. (2000) High voltage short duration pulses promote adventive shoot differentiation from intact tobacco seedlings. Electro-and Magneto-Biology 19: 177-187.Google Scholar
  93. [93]
    Cogălniceanu, G.; Radu, M.; Carasan, M.E. and Brezeanu, A. (2003) Interactions between exogenous applied signals (electrical, hormonal) and the in vitro developmental control mechanisms, Proceedings of the Institute of Biology. 5: 465-471.Google Scholar
  94. [94]
    Cogălniceanu, G.; Radu, M.; Câmpeanu, C. and Brezeanu, A. (2002) Variations of plasmalemma conductivity and diffusive permeability induced by external electric field. In vitrodevelopmental significance, Proceedings of the Institute of Biology 4: 413-420.Google Scholar
  95. [95]
    Harold, F.M. and Caldwell, J.H. (1990) Tips and currents: electrobiology of apical growth. In: Heath, T.H. (Ed.) Tip Growth in Plant and Fungal Cells. Academic Press, New York; p.59-89.Google Scholar
  96. [96]
    Hush, J.M.; Newman, I.A. and Overall, R.L. (1991) A calcium influx precedes organogenesis in Graptopetalum. Plant Cell Environ. 14: 657-665.Google Scholar
  97. [97]
    Allen, N.S.; Bennet, M.N.; Cox, D.N.; Shipley, A.; Erhardt, D.W. and Long, S.R. (1994) Effects of nod factors on alfalfa root hair Ca+ + and H+ currents on cytoskeletal behaviour. In: Daniels, M. J. (Ed.) Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 3. Kluwer Academic Publishers, The Netherlands; pp. 107-113.Google Scholar
  98. [98]
    Weisenseel, M.H. and Kicherer, M.R. (1981) Ionic currents as control mechanism in cytomorphogenesis. In: Kiermayer, M. (Ed.) Cytomorphogenesis in Plants. Springer, Wien; pp. 379-399.Google Scholar
  99. [99]
    Teissié, J. (1988) Effects of electric fields and currents on living cells and their potential use in biotechnology: a survey. Bioelectrochem. Bioenerg. 20: 133-142.Google Scholar
  100. [100]
    Takeda, J.; Senda, M.; Ozeki, Y. and Komamine, A. (1988) Membrane potential of cultured carrot cells in relation to the synthesis of anthocyanin and embryogenesis. Plant Cell Physiol. 29: 817-824.Google Scholar
  101. [101]
    Cogalniceanu, G.; Brezeanu, A.; Lupsea, S.; Matienco, B. (1999) Factors that enhance cell proliferation and secondary metabolism (anthocyanin biosynthesis) in pericarp long-term callus culture of Vitis viniferacv. Isabell. Acta Hort. Bot. Buc. 28: 303-317.Google Scholar
  102. [102]
    Machackova, J. and Krekule, J. (1991) The interaction of direct current with endogenous rhythms of flowering in Chenopodium rubrum.J. Plant Physiol. 138: 365-369.Google Scholar
  103. [103]
    Kasanova, Z.M. (1972) After-sowing processing of spring wheat seeds in electrical constant current. Electr. Process. Mat. 4: 71-72.Google Scholar
  104. [104]
    Davies, M.S. (1996) Effects of electromagnetic fields on early growth in three plant species and replication of previous results. Bioelectromagnetic. 17: 154-164.Google Scholar
  105. [105]
    Staselis, A. and Optazas, R. (1996) Influence of electromagnetic fields to sprout of seeds tomato and cucumber and morphogenesis of seedlings. Research papers LIAg. Eng and LA of Ag. 28: 121-130.Google Scholar
  106. [106]
    Mittenzwei, R.; Süssmuth, R.; Mei, W. (1996) Effects of extremely low-frequency electromagnetic fields on bacteria – the question of co-stressing factor. Bioelectrochem. Bioenerg. 40: 21-27.Google Scholar
  107. [107]
    Gutzeit, H.O. (2001) Biological effects of ELF-EMF enhanced stress-response: new insights and new questions. Electro-Magneto-Biol. 20: 15-26.Google Scholar
  108. [108]
    Blank, M. and Goodman, R. (1999) Electromagnetic fields may act directly on DNA. J. Cell Biochem. 75: 369-374.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Cogălniceanu Gina Carmen
    • 1
  1. 1.Institute of Biology Splaiul Independenţei 296Romania

Personalised recommendations