Advertisement

Adenosine and Cardioprotection

  • Robert M. MentzerJr.
  • Robert D. Lasley
Chapter
  • 43 Downloads
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 194)

Abstract

Myocardial ischemia is characterized by reduced ventricular function and altered myocardial metabolism. Metabolic consequences of ischemia include a net breakdown of the high energy phosphates creatine phosphate (CrP), and adenosine triphosphate (ATP), and the accumulation of metabolites such as inorganic phosphate (Pi), fatty acids, lactate, H+, and NADH. As the ischemic period progresses leak of calcium from intracellular stores and/or reduced reuptake of calcium by the sarcolemmal and sarcoplasmic reticulum (SR) Ca2+-ATPases results in increased free intracellular calcium concentration ([Ca2+]i.1-3 If coronary blood flow is restored within 15-20 minutes ischemia-induced injury is reversible, but myocardial contractility may remain depressed for hours to days. This prolonged ventricular contractile dysfunction has been termed myocardial stunning.4 Longer periods of myocardial ischemia (> 20 minutes) are associated with the activation of phospholipases and proteases resulting in irreversible myocyte injury or myocardial infarction.5

Keywords

Sarcoplasmic Reticulum Coronary Blood Flow Myocardial Stunning Adenosine Infusion Left Ventricular Develop Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marban E, Kitakaze M, Kusuoka H et al. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Nat! Acad Sci USA 1987;84:6005–6009.PubMedCrossRefGoogle Scholar
  2. 2.
    Steenbergen C, Murphy E, Levy L et al. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 1987;60:700–707.PubMedCrossRefGoogle Scholar
  3. 3.
    Kihara Y, Grossman W, Morgan JP. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res 1989;65:1029–1044.PubMedCrossRefGoogle Scholar
  4. 4.
    Braunwald E, Kloner RB. The stunned myocardium: Prolonged postischemic ventricular dysfunction. Circulation 1982;60: 1146–1149.CrossRefGoogle Scholar
  5. 5.
    Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Ann Rev Med 1991;42:225–246.PubMedCrossRefGoogle Scholar
  6. 6.
    Scott BD, Kerber RE. Clinical and experimental aspects of myocardial stunning. Prog Cardiovasc Dis 1991; 35:61–76.CrossRefGoogle Scholar
  7. 7.
    Bolli R. Myocardial stunning in man. Circulation 1992;86:1671–1691.PubMedCrossRefGoogle Scholar
  8. 8.
    Ely SW, Mentzer RM, Lasley RD et al. Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J Thorac Cardiovasc Surg 1985;90:549–556.PubMedGoogle Scholar
  9. 9.
    Lasley RD, Rhee JW, Van Wylen DGL et al. Adenosine A1, receptor mediated protection of the globally ischemic isolated rat heart. J Mol Cell Cardiol 1990;22:39–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Randhawa MPS Jr, Lasley RD, Mentzer RM (jrJr.) Salutary effects of exogenous adenosine on canine myocardial stunning in vivo. J Thorac Cardiovasc Surg 1995;110:63–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Thornton JD, Liu GS, Olsson RA et al. Intravenous pretreatment with A1,-selective adenosine analogues protects the heart against infarction. Circulation 1992;85:659–665.PubMedCrossRefGoogle Scholar
  12. 12.
    Lasley RD, Konyn PJ, Hegge JO et al. The effects of ischemic and adenosine preconditioning on interstitial fluid adenosine and myocardial infarct size. Am J Physiol 1995;269:H1460–H1466.PubMedGoogle Scholar
  13. 13.
    Dorheim TA, Hoffman A, Van Wylen DGL et al. Enhanced interstitial fluid adenosine attenuates myocardial stunning. J Surg 1991;110:136–145.Google Scholar
  14. 14.
    Hudspeth DA, Williams MW, Zhao ZQ et al. Pentostatin-augmented interstitial adenosine prevents postcardioplegia injury in damaged hearts. Ann Thorac Surg 1994;58:719–727.PubMedCrossRefGoogle Scholar
  15. 15.
    Martin BJ, Lasley RD, Mentzer RM (jrJr.) Infarct size reduction with the nucleoside transport inhibitor R75231 in swine. Am J Physiol (In Press), 1997.Google Scholar
  16. 16.
    Benson ES, Evans GT, Hallaway BE et al. Myocardial creatine phosphate and nucleotides in anoxic cardiac arrest and recovery. Am J Physiol 1961; 201:687–693.Google Scholar
  17. 17.
    Namm DH. Myocardial nucleotide synthesis from purine bases and nucleosides. Comparison of the rates of formation of purine nucleotides from various precursors and identification of the enzymatic routes for nucleotide formation in the isolated rat heart. Circ Res 1973;33:686–965.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu MS, Feinberg H. Incorporation of adenosine-8-’4C and inosine-8-14C into rabbit heart adenine nucleotides. Am J Physiol 1971;220:1242–1284.PubMedGoogle Scholar
  19. 19.
    Reibel DK, Rovetto MJ. Myocardial adenosine salvage rates and restoration of ATP content following ischemia. AmJ Physiol 1979;237:H247–H252.Google Scholar
  20. 20.
    Ambrosio G, Jacobus WE, Mitchell MC et al. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts. Am J Physiol 1989;256:H560–H566.PubMedGoogle Scholar
  21. 21.
    Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984;55:816–824.PubMedCrossRefGoogle Scholar
  22. 22.
    Mallet RT, Hartman DA, Bünger R. Glucose requirement for postischemic recovery of perfused working heart. Eur J Biochem 1990;188:481–493.PubMedCrossRefGoogle Scholar
  23. 23.
    Headrick JP, Willis RJ. Effects of adenosine antagonism and beta-blockade during low-flow ischaemia in rat heart. Clin Exper Pharmacol Physiol 1989; 16:885–891.CrossRefGoogle Scholar
  24. 24.
    Froldi G, Belardinelli L. Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications. Circ Res 1990;67:960–78.PubMedCrossRefGoogle Scholar
  25. 25.
    Schubert T, Vetter H, Owen P et al. Adenosine cardioplegia. Adenosine versus poassium cardioplegia: effects on cardiac arrest and postischemic recovery in he isolated rat heart. J Thorac Cardiovasc Surg 1989;98:1057–1065.PubMedGoogle Scholar
  26. 26.
    Belardinelli L, Linden J, Berne RM. The cardiac actions of adenosine. Prog Cardiovasc Dis 1989;22:73–97.CrossRefGoogle Scholar
  27. 27.
    Lasley RD, Mentzer RM (jrJr.) Adenosine improves the recovery of postischemic myocardial function via an adenosine A1, receptor mechanism. Am J Physiol 1992;263:H1460–H1465.PubMedGoogle Scholar
  28. 28.
    Yao Z, Gross GJ. Glibenclamide antagonizes adenosine Al receptor-mediated cardioprotection in stunned canine myocardium. Circulation 1993;88:235–244.PubMedCrossRefGoogle Scholar
  29. 29.
    Lasley RD, Mentzer RM (jrJr.) Pertussis toxin blocks adenosine A1, receptor mediated protection of the ischemic rat heart. J Mol Cell Cardiol 1993;25:815–821.PubMedCrossRefGoogle Scholar
  30. 30.
    Wyatt DA, Ely SW, Lasley RD et al. Purine-enriched asanguineous cardioplegia retards adenosine triphosphate degradation during ischemia and improves postischemic ventricular function. J Thorac Cardiovasc Surg 1989;97:771–778.PubMedGoogle Scholar
  31. 31.
    Lasley RD, Mentzer RM (jrJr.) Adenosine increases lactate release and delays onset of contracture during global low flow ischaemia. Cardiovasc Res 1993;27:96–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Mentzer RM (jrJr), Bünger R, Lasley RD. Adenosine enhanced preservation of myocardial function and energetics. Possible involvement of the adenosine A1, receptor system. Cardiovasc Res 1993;27:28–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhou Z, Bünger R, Lasley RD et al. Adenosine pretreatment increases cytosolic phosphorylation potential and attenuates postischemic cardiac dysfunction in swine. Surg Forum 1993;44:249–252.Google Scholar
  34. 34.
    Dobson JG, Fenton RA, Romano FD. The antiadrenergic actions of adenosine in the heart. In: Gerlach, E and Becker, BF, eds. Topics and Perspectives in Adenosine Research. Berlin, Heidelberg: Springer-Verlag, 1987:356–368.Google Scholar
  35. 35.
    Fenton RA, Moore EDW, Fay FS et al. Adenosine reduces the Ca2+ transients of isoproterenol-stimulated rat ventricular myocytes. Am J Physiol 1991;261:C1107–C1114.PubMedGoogle Scholar
  36. 36.
    Wennmalm M, Fredholm BB, Hedqvist P. Adenosine as a modulator of sympathetic nerve-stimulation-induced release of noradrenaline from the isolated rabbit heart. Acta Physiol Scand 1988;132:487–494.PubMedCrossRefGoogle Scholar
  37. 37.
    Richardt G, Waas W, Kranzhofer R et al. Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: a protective mechanism in early myocardial ischemia. Circ Res 1987;61:117–123.PubMedCrossRefGoogle Scholar
  38. 38.
    Richardt G, Blessing R, Schomig A. Cardiac noradrenaline release accelerates adenosine formation in the ischemic rat heart: role of neuronal noradrenaline carrier and adrenergic receptors. J Mol Cell Cardiol 1994;26:1321–1328.PubMedCrossRefGoogle Scholar
  39. 39.
    Rynning SE, Brunvand H, Birkeland S et al. Endogenous adenosine attenuates myocardial stunning by antiadrenergic effects exerted during ischemia and not during reperfusion. J Cardiovasc Pharmacol 1995;25:432–439.PubMedCrossRefGoogle Scholar
  40. 40.
    Fenton RA, Galeckas KJ, Dobson JG (jrJr.) Endogenous adenosine reduces depression of cardiac function induced by beta-adrenergic stimulation during low flow perfusion. J Mol Cell Cardiol1995;27:2373–2383.PubMedCrossRefGoogle Scholar
  41. 41.
    Fralix, TA, Murphy E, London RE. Protective effects of adenosine in the perfused rat heart: changes in metabolism and intracellular ion homeostasis. Am J Physiol 1993;264:C986–C994.PubMedGoogle Scholar
  42. 42.
    Karmazyn M, Cook MA. Adenosine A. receptor activation attenuates cardiac injury produced by hydrogen peroxide. CircRes 1992:71:1101–1110.Google Scholar
  43. 43.
    Xia Y, Khatchikian G, Zweier JL. Adenosine deaminase inhibition prevents free radical-mediated injury in the postischemic heart. J Biol Chem 1996;271:10096–10102.PubMedCrossRefGoogle Scholar
  44. 44.
    Krause FM, Jacobus WE, Becker LC. Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned ” myocardium. Circ Res 1989;65:526–530.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu QY, Feher J. Effect of ischemia and ischemia-reperfusion on ryanodine binding and Ca2+ uptake of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 1995;27:1965–1975.PubMedCrossRefGoogle Scholar
  46. 46.
    Zucchi R, Ronca-Testoni S, Yu G et al. Effects of ischemia and reperfusion on cardiac ryanodine receptors sarcoplasmic reticulum Ca2+ channels. Circ Res 1994:74:271–280.PubMedCrossRefGoogle Scholar
  47. 47. Valdivia CR, Lasley RD, Hegge JO et al. Adenosine pretreatment prevents myocardial stunning-induced reduction of ryanodine receptor function. Circulation 1996;94(Suppl I):1–185.CrossRefGoogle Scholar
  48. 48.
    Yao Z, Gross GJ. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 1994;89:1229–1236.PubMedCrossRefGoogle Scholar
  49. 49.
    Grover GJ, Dzwonczyk S, Parham CS et al. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused hearts and anesthetized dogs. Cardiovasc Drugs Ther 1990;4:465–474.PubMedCrossRefGoogle Scholar
  50. 50.
    Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994;89:1769–1775.PubMedCrossRefGoogle Scholar
  51. 51.
    Kirsch GE, Codina J, Birnbaumer L et al. Coupling of ATP-sensitive K+ channels to A1, receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990;259:H820–H826.PubMedGoogle Scholar
  52. 52.
    Grover GJ, Baird AJ, Sleph PG. Lack of a pharmacologic interaction between ATP-sensitive potassium channels and adenosine A(l) receptors in ischemic rat hearts. Cardiovasc Res 1996:31:511–517.PubMedGoogle Scholar
  53. 53.
    Xu J, Wang L, Hurt CM et al. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo. Circulation 1994;89:1209–1216.PubMedCrossRefGoogle Scholar
  54. 54.
    Sekili S, Jeroudi MO, Tang XL et al. Effect of adenosine on myocardial’ stunning’ in the dog. Circ Res 1995:76:82–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Todd J, Zhao ZQ, Williams MW et al. Intravascular adenosine at reperfusion reduces infarct size and neutrophil adherence. Ann Thorac Surg 1996:62:1364–1372.PubMedCrossRefGoogle Scholar
  56. 56.
    Vander Heide RS, Reimer KA. Effect of adenosine therapy at reperfusion on myocardial infarct size in dogs. Cardiovasc Res 1996;31:711–8.Google Scholar
  57. 57.
    Lasley RD, Noble MA, Konyn PJ et at. Different effects of an adenosine A1, analogue and ischemic preconditioning in isolated rabbit hearts. Ann Thorac Surg 1995;60:1698–1703.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Robert M. MentzerJr.
  • Robert D. Lasley

There are no affiliations available

Personalised recommendations