Potassium Channel Openers and Cardiac Surgery

  • Louis P. Perrault
  • Philippe Menasché
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 194)


Cardiac operations offer the unique possibility of precisely planning the time at which the aortic crossclamp will be applied, thereby initiating the period of global ischemia. This provides the opportunity of using the timely implementation of preconditioning strategies as a novel approach to intraoperative myocardial protection based on the therapeutic exploitation of the heart’s natural defense mechanisms against ischemic injury. Efficacy, safety and practicality issues have lead to shift attention from ischemic to pharmacologic preconditioning regimens, the underlying rationale being to take advantage of the cardioprotective mediators of ischemic preconditioning whilst eliminating the detrimental effects inherent to any ischemic insult. Among these mediators, potassium channel openers (PCO) are receiving a growing deal of attention because of the recognition (reviewed in another chapter of this book) that they might act as the effectors of the intracellular signaling pathway leading to ischemic preconditioning. Since one of the drugs is currently available this reinforces the interest of establishing their potential role in the armamentarium of our myocardial preservation techniques. This role might indeed be important as, depending on the timing and modalities of their administration, PCO may play a multiplicity of roles and can be considered as preconditioning agents (if given before standard potassium arrest), hyperpolarizing cardioplegic agents (if given instead of potassium cardioplegia) or simple potentiators of arrest (if given as additives to potassium cardioplegia). In this review, these three potential applications will be successively discussed.


Potassium Channel Ischemic Precondition Cardioprotective Effect Global Ischemia Myocardial Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kloner RA, Przyklenk K, Kay GL. Clinical evidence for stunned myocardium after coronary artery bypass surgery. J Card Surg 1994;9[Suppl]:397–402.PubMedGoogle Scholar
  2. 2.
    Boiling SF, Olszanski DA, Childs KF, et al. Stunning, preconditioning, and functional recovery after global myocardial ischemia. Ann Thorac Surg 1994;58:822–7.CrossRefGoogle Scholar
  3. 3.
    Ovize M, Kloner RA, Przyklenk K. Preconditioning and myocardial contractile function. In: Przyklenk K, Kloner RA, Yellon DM. eds. Ischemic preconditioning: the concept of endogenous cardioprotection. Boston: Kluwer Academic Publishers, 1994: 41–60.CrossRefGoogle Scholar
  4. 4.
    Hendricx M, Toshima Y, Mubagwa K, et al. Improved functional recovery after ischemic preconditioning in the globally ischemic rabbit heart is not mediated by adenosine A1 receptor activation. Bas Res Cardiol 1993;88:576–593.CrossRefGoogle Scholar
  5. 5.
    Kolocassides KG, Galinanes M, Hearse DJ. Ischemic preconditioning, cardioplegia or both? J Mol Cell Cardiol 1994;26:1411–1414.PubMedCrossRefGoogle Scholar
  6. 6.
    Steenbergen_C, Perlman ME, London RE, et al. Mechanism of preconditioning; ionic alterations. Circ Res 1993;72:112–125.PubMedCrossRefGoogle Scholar
  7. 7.
    Cave AC, Hearse DJ. Ischaemic preconditioning and contractile function: studies with normothermic and hypothermic global ischaemia. J Mol Cell Cardiol 1992;24:1113–1123.PubMedCrossRefGoogle Scholar
  8. 8.
    Galiñanes M, Argano V, Hearse DJ. Can ischemic preconditioning ensure optimal myocardial protection when delivery of cardioplegia is impaired? Circulation 1995;92(suppll): II-389–II-394.CrossRefGoogle Scholar
  9. 9.
    Abd-Elfattah AS, Ding M, Wechsler AS. Intermittent aortic cross-clamping prevents cumulative adenosine triphosphate depletion, ventricular fibrillation, and dysfunction (stunning):is it preconditioning? J Thorac Cardiovasc Surg 1995;110:328–329.PubMedCrossRefGoogle Scholar
  10. 10.
    Alkhulaifi AM, Yellon DM, Pugsley WB, et al. Preconditioning the human heart during aorto-coronary bypass surgery. Eur J Cardiothorac Surg 1994;8:270–276.PubMedCrossRefGoogle Scholar
  11. 11.
    Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. The Lancet 1993;342:276–277.CrossRefGoogle Scholar
  12. 12. Di Salvo C, Hemming A, Jenkins D, et al. Can the human myocardium be preconditioned with ischaemia under hypothermic conditions? Proceedings of the 9th annual meeting of the European Association for Cardiothoracic Surgery, Paris 25-27 September 1995 page 324 (abstract).Google Scholar
  13. 13.
    Perrault LP, MenaschéP, Bel al. Ischemic preconditioning in cardiac surgery: a word of caution. J Thorac Cardiovasc Surg 1996; (in press).Google Scholar
  14. 14.
    Marber MS, Latchman DS, Walker JM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993;88:1264–1272.PubMedCrossRefGoogle Scholar
  15. 15.
    Sun JZ, Tang XL, Knowlton AA, et al. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24h after brief ischemia in conscious pigs. J Clin Invest 1995;95:388–403.PubMedCrossRefGoogle Scholar
  16. 16.
    Robinson BL, Morita T, Toft DO, et al. Accelerated recovery of postischemic stunned myocardium after induced expression of myocardial heat-shock protein (HSP 70). J Thorac Cardiovasc Surg 1995; 109:753–764.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu X, Engelman RM, Moraru II, et al. Heat shock. A new approach for myocardial preservation in cardiac surgery. Circulation 1992;86(suppl II):II–358–II–363.Google Scholar
  18. 18.
    McGrath LB, Locke M, Cane M, et al. Heat shock protein (HSP 72) expression in patients undergoing cardiac operations. J Thorac Cardiovasc Surg1995;109:370–376.PubMedCrossRefGoogle Scholar
  19. 19.
    Bums PG, Krukenkamp IB, Caldarone CA, et al. Does cardiopulmonary bypass alone elicit myoprotective preconditioning? Circulation 1995;92(supplII):II447–II451.Google Scholar
  20. 20.
    Winter CB, Mitchell MB, Locke-Winter CR, et al. Adenosine-induced cardiac preconditioning is dependent upon α1-adrenoreceptor activation. Circulation 1992;86(suppl I): 1–25, (abstract).CrossRefGoogle Scholar
  21. 21.
    Tsuchida A, Miura T, Miki T, et al. Role of adenosine receptor activation in myocardial infarct size limitation by ischemic preconditioning. Cardiovasc Res 1992; 26:456–461.PubMedCrossRefGoogle Scholar
  22. 22.
    Subramanian VA, Sani G, Benetti FJ. Minimally invasive coronary bypass surgery: a multi-center report of preliminary clinical experience. Circulation 1995;92(suppl I): 1–645.Google Scholar
  23. 23.
    Yao Z, Gross GJ. A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course and role of Katp channels. Circulation 1994;89:1229–1236.PubMedCrossRefGoogle Scholar
  24. 24.
    Hecquet C, Mestre M, Cavero I. Synergistic cardioprotective effect of a subtreshold concentration of aprikalim and a subtreshold ischemic preconditioning stress. Circulation 1994;90(suppl I):I–48.Google Scholar
  25. 25.
    Grover GJ, Dzwonczyk S, Sleph PG. Reduction of ischemic damage in isolated rat hearts by the potassium channel opener RP 52891. Eur J Pharmacol 1990;191:11–18.PubMedCrossRefGoogle Scholar
  26. 26.
    Grover GJ, Sleph PG. Protective effect of Katp openers in ischemic rat heart treated with a potassium cardioplegic solution. J Cardiovasc Pharmacol 1995;26:698–706.PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen NM, Wise RM, Wechsler AS, et al. Elective cardiac arrest with a hyperpolarizing adenosine triphosphate-sensitive potassium channel opener; a novel form of myocardial protection. J Thorac Cardiovasc Surg 1993;106:317–328.PubMedGoogle Scholar
  28. 28.
    Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223–233.PubMedCrossRefGoogle Scholar
  29. 29.
    Yao Z, Gross GJ. Role of nitric oxide, muscarinic receptors, and the ATP-sensitive K+ channel in mediating the effects of acetylcholine to mimic preconditioning in dogs. Circ Res 1993;73:1193–1201.PubMedCrossRefGoogle Scholar
  30. 30.
    Galie N, Guamieri C, Ussia GP, et al. Limitation of myocardial infarct size by nicorandil after sustained ischemia in pigs. J Cardiovasc Pharmacol 1995;26:477–484.PubMedCrossRefGoogle Scholar
  31. 31.
    Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994;90:700–705.PubMedCrossRefGoogle Scholar
  32. 32.
    Ikonomidis_JS, Shirai T, Weisel RD, et al. “Ischemic ” or adenosine preconditioning of human ventricular cardiomyocyte is protein C dependent. Circulation 1995;92(suppl I): 1–12.CrossRefGoogle Scholar
  33. 33.
    Speechly-Dick ME, Grover GJ, Yellon DM. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. Circ Res 1995;77:1030–1035.PubMedCrossRefGoogle Scholar
  34. 34.
    McCullough JR, Normandin DE, Conder ML, et al. Specific block of the antiischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res 1991;69:949–958.PubMedCrossRefGoogle Scholar
  35. 35.
    Hu K, Duan D, Li GR, et al. Protein kinase C activates ATP-sensitive K+ current in human and rabbit ventricular myocytes. Circ Res 1996;78:492–498.PubMedCrossRefGoogle Scholar
  36. 36.
    Grover GJ, Baird AJ, Sleph PG. Lack of a pharmacologic interaction between ATP-sensitive potassium channels and adenosine Al receptors in ischemic rat hearts. Cardiovasc Res 1996;31:511–517.PubMedGoogle Scholar
  37. 37.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.PubMedCrossRefGoogle Scholar
  38. 38.
    Menasché P, KevelaΪtis E, Mouas C, et al. Preconditioning with potassium channel openers: a new concept for enhancing cardioplegic protection? J Thorac Cardiovasc Surg 1995;110:1606–1614.PubMedCrossRefGoogle Scholar
  39. 39.
    Menasch P, Mouas C, Grousset C. Is potassium channel opening an effective form of preconditioning before cardioplegia? Ann Thorac Surg 1996;61:176+4–1768.Google Scholar
  40. 40.
    Pignac J, Bourgouin J, Dumont L, et al. Cardioplegia and the K+ channel modulator aprikalim (RP 52891): improved cardioprotection in isolated ischemic rabbit hearts. Can J Physiol 1994;72:126–132.CrossRefGoogle Scholar
  41. 41.
    Sugimoto S, Puddu PE, Monti F, et al. Pretreatment with the adenosine triphosphate-sensitive potassium channel opener nicorandil and improved myocardial protection during high-potassium cardioplegic hypoxia. J Thorac Cardiovasc 1994; 108:455–66.Google Scholar
  42. 42.
    Sugimoto S, Iwashiro K, Monti F, et al. The risk of myocardial stunning is decreased concentration-dependently by Katp channel activation with nicorandil before high K+ cardioplegia. Int J Cardiol 1995;48:11–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Sugimoto S, Puddu PE, Monti F, et al. Activation of ATP-dependent K+ channels enhances myocardial protection due to cold high potassium cardioplegia: a force-frequency relationship study. J Mol Cell Cardiol 1995;27:1867–1881.PubMedCrossRefGoogle Scholar
  44. 44.
    Shigematsu S, Sato T, Abe T, et al. Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 1995;92:2266–2275.PubMedCrossRefGoogle Scholar
  45. 45.
    Maskal SL, Cohen NM, Hsia PW, et al. Hyperpolarized cardiac arrest with a potassium-channel opener, aprikalim. J Thorac Cardiovasc Surg 1995;110:1083–1095.PubMedCrossRefGoogle Scholar
  46. 46.
    Hearse DJ. Activation of ATP-sensitive potassium channels: a novel pharmacological approach to myocardial protection. Cardiovascular Res 1995;30:l–17.Google Scholar
  47. 47.
    Grover GJ. Protective effects of ATP sensitive potassium channel openers in models of myocardial ischaemia. Cardiovasc Res 1994;28:778–789.PubMedCrossRefGoogle Scholar
  48. 48.
    Stembergh WC, Brunsting LA, Abd-Elfattah AS, et al. Basal metabolic energy requirements of polarized and depolarized arrest in rat heart. Am J Physiol 1989;256:H846–H851.Google Scholar
  49. 49.
    Inoue I, Nagase H, Kishi K, et al. ATP sensitive K+ channels in the mitochondrial inner membrane. Nature 1991;352:244–247.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang SY, Friedman M, Johnson RG, et al. Adenosine triphosphate-sensitive K+ channels mediate postcardioplegia coronary hyperemia. J Thorac Cardiovasc Surg 1995;110:1073–1082.PubMedCrossRefGoogle Scholar
  51. 51.
    Lopez JR, Jahangir R, Jahangir A, et al. Potassium channel openers prevent potassium-induced calcium loading of cardiac cells: possible implications in cardioplegia. J Thorac Cardiovasc Surg 1996;112:820–831.PubMedCrossRefGoogle Scholar
  52. 52.
    Yan GX, Yamada KA, Kluber AG, et al. Dissociation between cellular k+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia. Circulation 1993;72:560–570.CrossRefGoogle Scholar
  53. 53.
    Lawton JS, Sepic JD, Allen CT, et al. Myocardial protection with potassium-channel openers is as effective as St-Thomas’ solution in the rabbit heart. Ann Thorac Surg 1996;62:31–39.PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen NM, Damiano RJ, Wechsler AS. Is there an alternative to potassium arrest? Ann Thorac Surg 1995;60:858–863.PubMedCrossRefGoogle Scholar
  55. 55.
    Yao Z, Gross GJ. Effects of the Katp opener bimakalim on coronary blood low, monophasic action potential duration and infarct size in dogs. Circulation 1994;89:1769–1775.PubMedCrossRefGoogle Scholar
  56. 56.
    Lawton JS, Harrington GC, Allen CT, et al. Myocardial protection with pinacidil cardioplegia in the blood-perfused heart. Ann Thorac Surg 1996;61:1680–1688.PubMedCrossRefGoogle Scholar
  57. 57.
    Galiñanes M, Shattock MJ, Hearse DJ. Effects of potassium channel modulation during global ischemia in isolated rat hearts with and without cardioplegia. Cardiovasc Res 1992;26:1063–1068.PubMedCrossRefGoogle Scholar
  58. 58.
    Grover GJ, Dwonczyk S, Parham CS. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated rat hearts and anesthetized dogs. Cardiovasc Drugs Ther 1990;l 5:465–474.CrossRefGoogle Scholar
  59. 59.
    Irie H. Experimental studies on ischemic injury and reperfusion injury in the sarcoplasmic reticulum. The myocardial protective effect of nicorandil. Jpn Circ J 1998;52:563–569.CrossRefGoogle Scholar
  60. 60.
    Hosoda H, Sunamori M, Suzuki A. Effect of pinacidil on rat hearts undergoing hypothermic cardioplegia. Ann Thorac Surg 1994; 58:1631–1636.PubMedCrossRefGoogle Scholar
  61. 61.
    Qiu Y, Galiñanes M, Hearse DJ. Protective effect of nicorandil as an additive to the solution for continuous cardioplegia. J Thorac Cardiovasc Surg 1995;110:1063–1072.PubMedCrossRefGoogle Scholar
  62. 62.
    Menasché P, Tronc F, Nguyen A, et al. Retrograde warm blood cardioplegia preserves hypertrophied myocardium: A clinical study. Ann Thorac Surg 1994;57:1429–1435.PubMedCrossRefGoogle Scholar
  63. 63.
    Mizumara T, Nithipatikom K, Gross GJ. Bimakalim, a ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. Circulation 1995;92:1236–1245.CrossRefGoogle Scholar
  64. 64.
    Mizumara T, Gross GJ. The cardioprotective effect of nicorandil, a Katp channel opener nitrate is blocked by glyburide in dogs. J Mol Cell Cardiol 1995;27:A24.Google Scholar
  65. 65.
    Mizumara T, Nithipatikom K, Gross GJ. Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog. Cardiovasc Res 1995;29:482–489.Google Scholar
  66. 66.
    Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates postischemic leukocyte adhesion and emigration: Role of adenosine and ATP-sensitive potassium channels. Circulation 1994 90;(suppl I): A2561 (abstract).Google Scholar
  67. 67.
    Sawa Y, Matsuda H, Shimazaki Y, et al. Evaluation of leukocyte-depleted terminal blood cardioplegic solution in patients undergoing elective and emergency coronary artery bypass grafting. J Thorac Cardiovasc Surg 1994;108:1125–1231.PubMedGoogle Scholar
  68. 68.
    Auchampach JA, Maruyama M, CaveroI, et al. Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 1992;86:311–319.PubMedCrossRefGoogle Scholar
  69. 69.
    Videbaek LM, Aalkjaer C, Hughes AD. Effect of pinacidil on ion permeability in resting and contracted resistance vessels. Am J Physiol 1990; 259:H14–H22.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Louis P. Perrault
  • Philippe Menasché

There are no affiliations available

Personalised recommendations