Advertisement

New Therapies for Sepsis

  • Liz Whittaker
  • Simon Nadel
Chapter

Abstract

There have been significant improvements in the outcome of sepsis in more recent years. The recently reported mortality rate of between 7% and 18% is a significant improvement from the more than 90% mortality reported in the 1960s (1–3). However, sepsis remains the second leading cause of death in children aged 1 to 14 years in the developed world, with an estimated financial burden of $1.97 billion per year in the United States (4).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booy R, Habibi P, Nadel S, et al. Reduction in case fatality rate from meningococcal disease associated with improved healthcare delivery. Arch Dis Child 2001;85: 386–390.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nadel S, Goldstein B, Williams MW, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet 2007; 369:836–843.PubMedCrossRefGoogle Scholar
  3. 3.
    Stiehm ER, Damrosch DS. Factors in the prognosis of meningococcal infection. Review of 63 cases with emphasis on recognition and management of the severely ill patient. J Pediatr 1966;68:457–467.PubMedCrossRefGoogle Scholar
  4. 4.
    Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 2003;167:695–701.PubMedCrossRefGoogle Scholar
  5. 5.
    Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6(1):2–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Beutler B, Poltorak A. Sepsis and evolution of the innate immune response. Crit Care Med 2001;29(7 suppl):S2–6; discussion S6–7.CrossRefGoogle Scholar
  7. 7.
    Aird WC. Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis. Crit Care Med 2001;29(7 suppl):S28–34; discussion S34–35.CrossRefGoogle Scholar
  8. 8.
    Marshall JC, Vincent JL, Fink MP, et al. Measures, markers, and mediators: toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000. Crit Care Med 2003;31(5): 1560–1567.PubMedCrossRefGoogle Scholar
  9. 9.
    Bonsu BK, Chb M, Harper MB. Identifying febrile young infants with bacteremia: is the peripheral white blood cell count an accurate screen? Ann Emerg Med 2003;42(2):216–225.PubMedCrossRefGoogle Scholar
  10. 10.
    Meisner M. Biomarkers of sepsis: clinically useful? Curr Opin Crit Care 2005;11 (5):473–480.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Stryjewski GR, Nylen ES, Bell MJ, et al. Interleukin-6, interleukin-8, and a rapid and sensitive assay for calcitonin precursors for the determination of bacterial sepsis in febrile neutropenic children. Pediatr Crit Care Med 2005;6(2):129–135.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Welch SB, Nadel S. Treatment of meningococcal infection. Arch Dis Child 2003;88:608–614.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics 2003;112(4):793–799.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Carcillo JA, Fields AI. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 2002;30(6): 1365–1378.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lequier LL, Nikaidoh H, Leonard SR, et al. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 2000;117(6):1706–1712.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Marshall JC, Foster D, Vincent JL, et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J Infect Dis 2004;190(3):527–534.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Braude AI, Douglas H, Davis CE. Treatment and prevention of intravascular coagulation with antiserum to endotoxin. J Infect Dis 1973;128(suppl):157–164.CrossRefGoogle Scholar
  18. 18.
    McCabe WR, DeMaria A Jr, Berberich H, Johns MA. Immunization with rough mutants of Salmonella minnesota: protective activity of IgM and IgG antibody to the R595 (Re chemotype) mutant. J Infect Dis 1988;158(2):291–300.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Warren HS, Amato SF, Fitting C, et al. Assessment of ability of murine and human anti-lipid A monoclonal antibodies to bind and neutralize lipopolysaccharide. J Exp Med 1993;177(1):89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Angus DC, Birmingham MC, Balk RA, et al. E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomized controlled trial. E5 Study Investigators. JAMA 2000;283:1723–1730.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ziegler EJ, Fisher CJ Jr, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med 1991;324(7):429–436.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    McCloskey RV, Straube RC, Sanders C, Smith SM, Smith CR. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group. Ann Intern Med 1994;121:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Derkx B, Wittes J, McCloskey R. Randomized, placebo-controlled trial of HA-1A, a human monoclonal antibody to endotoxin, in children with meningococcal septic shock. European Pediatric Meningococcal Septic Shock Trial Study Group. Clin Infect Dis 1999;28:770–777.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Chan B, Kalabalikis P, Klein N, Heyderman R, Levin M. Assessment of the effect of candidate anti-inflammatory treatments on the interaction between meningococci and inflammatory cells in vitro in a whole blood model. Biotherapy 1996;9(4):221–228.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Beutler B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol 2000;3:23–28.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gazzano-Santoro H, Parent JB, Grinna L, et al. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun 1992;60(11): 4754–4761.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Larrick JW, Hirata M, Zheng H, etal. A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J Immunol 1994;152(1):231–240.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Giroir BP, Quint P A, Barton P, et al. Preliminary evaluation of recombinant aminoterminal fragment of human bactericidal/permeability-increasing protein in children with severe meningococcal sepsis. Lancet 1997;350:1439–1443.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Levin M, Quint PA, Goldstein B, et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group (see comment). Lancet 2000;356:961–967.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hellman J, Warren HS. Antiendotoxin strategies. Infect Dis Clin North Am 1999;13(2):371–386, ix.PubMedCrossRefGoogle Scholar
  31. 31.
    Parker TS, Levine DM, Chang JC, Laxer J, Coffin CC, Rubin AL. Reconstituted high-density lipoprotein neutralizes gram-negative bacteriallipopolysaccharides in human whole blood. Infect Immun 1995;63(1):253–258.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pajkrt D, Doran JE, Koster F, et al. Anti-inflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J Exp Med 1996;184(5): 1601–1608.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu A, Hinds CJ, Thiemermann C. High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock 2004;21(3): 210–221.PubMedCrossRefGoogle Scholar
  34. 34.
    Terblanche M, Almog Y, Rosenson RS, Smith TS, Hackam DG. Statins: panacea for sepsis? Lancet Infect Dis 2006;6(4):242–248.PubMedCrossRefGoogle Scholar
  35. 35.
    Hackam DG, Mamdani M, Li P, Redelmeier DA. Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet 2006; 367(9508):413–418.PubMedCrossRefGoogle Scholar
  36. 36.
    Mortensen EM, Restrepo MI, Anzueto A, Pugh J. The effect of prior statin use on 30-day mortality for patients hospitalized with community-acquired pneumonia. Respir Res 2005;6:82.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fernandez R, De Pedro VJ, Artigas A. Statin therapy prior to ICU admission: protection against infection or a severity marker? Intensive Care Med 2006;32(1): 160–164.PubMedCrossRefGoogle Scholar
  38. 38.
    Aoki H, Kodama M, Tani T, Hanasawa K. Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-immobilized fiber. Am J Surg 1994;167(4):412–417.PubMedCrossRefGoogle Scholar
  39. 39.
    Gardlund B, Sjolin J, Nilsson A, et al. Plasmapheresis in the treatment of primary septic shock in humans. Scand J Infect Dis 1993;25(6):757–761.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D. Hemofiltration in human sepsis: evidence for elimination of immunomodulatory substances. Kidney Int 1995;48(5):1563–1570.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Pollack M. Blood exchange and plasmapheresis in sepsis and septic shock. Clin Infect Dis 1992;15(3):431–433.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous venovenous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000;356(9223):26–30.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Reeves JH, Butt WW, Shann F, et al. Continuous plasma filtration in sepsis syndrome. Plasmafiltration in Sepsis Study Group. Crit Care Med 1999;27(10): 2096–2104.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    van Deuren M, Frieling JT, van der Ven-Jongekrijg J, et al. Plasma patterns of tumor necrosis factor-alpha (TNF) and TNF soluble receptors during acute meningococcal infections and the effect of plasma exchange. Clin Infect Dis 1998;26(4):918–923.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Morgera S, Rocktaschel J, Haase M, et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med 2003;29(11):1989–1995.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nemoto H, Nakamoto H, Okada H, et al. Newly developed immobilized polymyxin B fibers improve the survival of patients with sepsis. Blood Purif 2001;19(4):361–368; discussion 368–369.PubMedCrossRefGoogle Scholar
  47. 47.
    Staubach KH, Boehme M, Zimmermann M, Otto V. A new endotoxin adsorption device in Gram-negative sepsis: use of immobilized albumin with the MATISSE adsorber. Transfus Apher Sci 2003;29(1):93–98.PubMedCrossRefGoogle Scholar
  48. 48.
    Bengsch S, Boos KS, Nagel D, Seidel D, Inthorn D. Extracorporeal plasma treatment for the removal of endotoxin in patients with sepsis: clinical results of a pilot study. Shock 2005;23(6):494–500.PubMedGoogle Scholar
  49. 49.
    Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 1997;112(1):235–243.PubMedCrossRefGoogle Scholar
  50. 50.
    Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest 2003;112(4):460–467.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985; 229(4716):869–871.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987;330(6149):662–664.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 1988;81(4):1162–1172.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Berg DJ, Kuhn R, Rajewsky K, etal. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest 1995;96(5):2339–2347.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fisher CJ Jr, Agosti JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fe fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996;334:1697–1702.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Marshall JC. Such stuff as dreams are made on: mediator-directed therapy in sepsis. Nat Rev Drug Discov 2003;2:391–405.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Panacek EA, Marshall JC, Albertson TE, et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 2004;32: 2173–2182.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Pathan N, Hemingway CA, Alizadeh AA, etal. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 2004;363:203–209.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fisher CJ Jr, Dhainaut JF, Opal SM, etal. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhiL-1ra Sepsis Syndrome Study Group. JAMA 1994;271:1836–1843.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Opal SM, Fisher CJ Jr, Dhainaut JF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebocontrolled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit Care Med 1997;25:1115–1124.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    van der Poll T, Keogh CV, Buurman WA, Lowry SF. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumonia in mice. Am J Respir Crit Care Med 1997;155:603–608.PubMedCrossRefGoogle Scholar
  62. 62.
    Greenberger MJ, Strieter RM, Kunkel SL, Danforth JM, Goodman RE, Standiford TJ. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J Immunol 1995;155(2):722–729.PubMedGoogle Scholar
  63. 63.
    Sewnath ME, Olszyna DP, Birjmohun R, ten Kate FJ, Gouma DJ, van Der Poll T. IL-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance. J Immunol 2001;166:6323–6331.PubMedCrossRefGoogle Scholar
  64. 64.
    Marchant A, Deviere J, Byl B, De Groote D, Vincent JL, Goldman M. Interleukin-10 production during septicaemia. Lancet 1994;343:707–708.PubMedCrossRefGoogle Scholar
  65. 65.
    Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 1991;88:1747–1754.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Docke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med 1997;3:678–681.PubMedCrossRefGoogle Scholar
  67. 67.
    Bilgin K, Yaramis A, Haspolat K, Tas MA, Gunbey S, Derman O. A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics 2001;107:36–41.PubMedCrossRefGoogle Scholar
  68. 68.
    Kaul R, McGeer A, Norrby-Teglund A, et al. Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome-a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis 1999;28:800–807.CrossRefGoogle Scholar
  69. 69.
    Alejandria MM, Lansang MA, Dans LF, Mantaring JB. Intravenous immunoglobulin for treating sepsis and septic shock. Cochrane Database Syst Rev 2001(2): CD001090.Google Scholar
  70. 70.
    Cronin L, Cook DJ, Cadet J, et al. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med 1995;23:1430–1439.PubMedCrossRefGoogle Scholar
  71. 71.
    Vincent JL, Sun Q, Dubois MJ. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin Infect Dis 2002;34:1084–1093.PubMedCrossRefGoogle Scholar
  72. 72.
    Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000;283:1038–1045.PubMedCrossRefGoogle Scholar
  73. 73.
    Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med 1999;27:723–732.PubMedCrossRefGoogle Scholar
  74. 74.
    Hatherill M, Tibby SM, Hilliard T, Turner C, Murdoch IA. Adrenal insufficiency in septic shock. Arch Dis Child 1999;80:51–55.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Riordan FA, Thomson AP, Ratcliffe JM, Sills JA, Diver MJ, Hart CA. Admission cortisol and adrenocorticotrophic hormone levels in children with meningococcal disease: evidence of adrenal insufficiency? Crit Care Med 1999;27: 2257–2261.PubMedCrossRefGoogle Scholar
  76. 76.
    Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fiudrocortisone on mortality in patients with septic shock. JAMA 2002;288:862–871.PubMedCrossRefGoogle Scholar
  77. 77.
    Thys F, Laterre PF. Hydrocortisone in septic shock: too much, too little, too soon? Crit Care Med 2005;33:2683–2684.PubMedCrossRefGoogle Scholar
  78. 78.
    Kennedy WA, Hoyt MJ, McCracken GH Jr. The role of corticosteroid therapy in children with pneumococcal meningitis. Am J Dis Child 1991;145:1374–1378.PubMedGoogle Scholar
  79. 79.
    Bernard GR, Wheeler AP, Russell JA, et al. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med 1997;336:912–918.PubMedCrossRefGoogle Scholar
  80. 80.
    Arons MM, Wheeler AP, Bernard GR, et al. Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Ibuprofen in Sepsis Study Group. Crit Care Med 1999;27:699–707.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Virdis A, Colucci R, Fornai M, et al. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J Pharmacal Exp Ther 2005;312:945–953.CrossRefGoogle Scholar
  82. 82.
    Haque K, Mohan P. Pentoxifylline for neonatal sepsis. Cochrane Database Syst Rev 2003(4):CD004205.Google Scholar
  83. 83.
    Zeni F, Pain P, Vindimian M, et al. Effects of pentoxifylline on circulating cytokine concentrations and hemodynamics in patients with septic shock: results from a double-blind, randomized, placebo-controlled study. Crit Care Med 1996;24:207–214.PubMedCrossRefGoogle Scholar
  84. 84.
    Staubach KH, Schroder J, Stuber F, Gehrke K, Traumann E, Zabel P. Effect of pentoxifylline in severe sepsis: results of a randomized, double-blind, placebo-controlled study. Arch Surg 1998;133:94–100.PubMedCrossRefGoogle Scholar
  85. 85.
    Lauterbach R, Pawlik D, Kowalczyk D, Ksycinski W, Helwich E, Zembala M. Effect of the immunomodulating agent, pentoxifylline, in the treatment of sepsis in prematurely delivered infants: a placebo-controlled, double-blind trial. Crit Care Med 1999;27:807–814.PubMedCrossRefGoogle Scholar
  86. 86.
    Lauterbach R, Zembala M. Pentoxifylline reduces plasma tumour necrosis factoralpha concentration in premature infants with sepsis. Eur J Pediatr 1996;155:404–409.PubMedCrossRefGoogle Scholar
  87. 87.
    Taylor FB Jr, Chang A, Ruf W, et al. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ Shock 1991;33:127–134.PubMedGoogle Scholar
  88. 88.
    Taylor FB Jr, Chang AC, Peer GT, et al. DEGR-factor Xa blocks disseminated intravascular coagulation initiated by Escherichia coli without preventing shock or organ damage. Blood 1991;78:364–368.PubMedCrossRefGoogle Scholar
  89. 89.
    Abraham E. Tissue factor inhibition and clinical trial results of tissue factor pathway inhibitor in sepsis. Crit Care Med 2000;28:S31–33.CrossRefGoogle Scholar
  90. 90.
    Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. Jama 2003;290:238–247.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Dickneite G. Antithrombin III in animal models of sepsis and organ failure. Semin Thromb Hemost 1998;24:61–69.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Inthorn D, Hoffmann JN, Hartl WH, Muhlbayer D, Jochum M. Effect of antithrombin III supplementation on inflammatory response in patients with severe sepsis. Shock 1998;10:90–96.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wiedermann CJ, Hoffmann JN, Juers M, et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit Care Med 2006;34:285–292.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Taylor FB Jr, Chang A, Esmon CT, D’Angelo A, Vigano-D’Angelo S, Blick KE. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 1987;79:918–925.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Taylor FB Jr, Stearns-Kurosawa DJ, Kurosawa S, et al. The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood 2000; 95:1680–1686.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Faust SN, Levin M, Harrison OB, et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 2001;345:408–416.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Matthay MA. Severe sepsis-a new treatment with both anticoagulant and antiinflammatory properties. N Engl J Med 2001;344:759–762.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001;344:699–709.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004;32:858–873.CrossRefGoogle Scholar
  100. 100.
    Abraham E, Laterre PF, Garg R, et al. Administration of Drotrecogin Alfa (Activated) in Early Stage Severe Sepsis (ADDRESS) Study Group. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 2005;353: 1332–1341.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kornelisse RF, Hazelzet JA, Savelkoul HF, et al. The relationship between plasminogen activator inhibitor-1 and pro-inflammatory and counter-inflammatory mediators in children with meningococcal septic shock. J Infect Dis 1996; 173:1148–1156.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Aiuto LT, Barone SR, Cohen PS, Boxer RA. Recombinant tissue plasminogen activator restores perfusion in meningococcal purpura fulminans. Crit Care Med 1997;25:1079–1082.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zenz W, Zoehrer B, Levin M, et al. Use of recombinant tissue plasminogen activator in children with meningococcal purpura fulminans: a retrospective study. Crit Care Med 2004;32:1777–1780.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Murakami J, Ohtani A, Murata S. Protective effect of T-686, an inhibitor of plasminogen activator inhibitor-1 production, against the lethal effect of lipopolysaccharide in mice. Jpn J Pharmacol 1997;75:291–294.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Vincent JL, Spapen H, Bakker J, Webster NR, Curtis L. Phase II multicenter clinical study of the platelet-activating factor receptor antagonist BB-882 in the treatment of sepsis. Crit Care Med 2000;28:638–642.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Poeze M, Froon AH, Ramsay G, Buurman WA, Greve JW. Decreased organ failure in patients with severe SIRS and septic shock treated with the platelet-activating factor antagonist TCV-309: a prospective, multicenter, double-blind, randomized phase II trial. Shock 2000;14:421–428.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Dhainaut JF, Tenaillon A, Hemmer M, et al. Confirmatory platelet-activating factor receptor antagonist trial in patients with severe gram-negative bacterial sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. BN 52021 Sepsis Investigator Group. Crit Care Med 1998;26:1963–1971.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tjoelker LW, Wilder C, Eberhardt C, et al. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature 1995;374(6522):549–553.CrossRefGoogle Scholar
  109. 109.
    Schuster DP, Metzler M, Opal S, et al. Recombinant platelet-activating factor acetylhydrolase to prevent acute respiratory distress syndrome and mortality in severe sepsis: Phase lib, multicenter, randomized, placebo-controlled, clinical trial. Crit Care Med 2003;31:1612–1619.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Opal S, La terre PF, Abraham E, et al. Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 2004;32:332–341.PubMedCrossRefGoogle Scholar
  111. 111.
    Claus RA, Russwurm S, Dohrn B, Bauer M, Losche W. Plasma platelet-activating factor acetylhydrolase activity in critically ill patients. Crit Care Med 2005; 33(6):1416–1419.PubMedCrossRefGoogle Scholar
  112. 112.
    Parent C, Eichacker PQ. Neutrophil and endothelial cell interactions in sepsis. The role of adhesion molecules. Infect Dis Clin North Am 1999;13:427–447.PubMedCrossRefGoogle Scholar
  113. 113.
    Hawkins HK, Heffelfinger SC, Anderson DC. Leukocyte adhesion deficiency: clinical and postmortem observations. Pediatr Pathol 1992;12:119–130.PubMedCrossRefGoogle Scholar
  114. 114.
    Haley M, Parent C, Cui X, et al. Neutrophil inhibition with L-selectin-directed MAb improves or worsens survival dependent on the route but not severity of infection in a rat sepsis model. J Appl Physiol 2005;98:2155–2162.PubMedCrossRefGoogle Scholar
  115. 115.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329:2002–2012.PubMedCrossRefGoogle Scholar
  116. 116.
    Cobb JP, Danner RL. Nitric oxide and septic shock. JAMA 1996;275:1192–1196.PubMedCrossRefGoogle Scholar
  117. 117.
    Murad F. The 1996 Albert Lasker Medical Research Awards. Signal transduction using nitric oxide and cyclic guanosine monophosphate. JAMA 1996;276:1189–1192.PubMedCrossRefGoogle Scholar
  118. 118.
    Hare JM, Colucci WS. Role of nitric oxide in the regulation of myocardial function. Prog Cardiovasc Dis 1995;38:155–166.PubMedCrossRefGoogle Scholar
  119. 119.
    Avontuur JA, Boomsma F, van den Meiracker AH, de Jong FH, Bruining HA. Endothelin-1 and blood pressure after inhibition of nitric oxide synthesis in human septic shock. Circulation 1999;99:271–275.PubMedCrossRefGoogle Scholar
  120. 120.
    Avontuur JA, Tutein Nolthenius RP, Buijk SL, Kanhai KJ, Bruining HA. Effect of L-NAME, an inhibitor of nitric oxide synthesis, on cardiopulmonary function in human septic shock. Chest 1998;113:1640–1646.PubMedCrossRefGoogle Scholar
  121. 121.
    Cobb JP, Natanson C, Hoffman WD, et al. N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med 1992;176:1175–1182.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Freeman BD, Cobb JP. Nitric oxide synthase as a therapeutic target in sepsis-more questions than answers? Crit Care Med 1998;26:1469–1470.PubMedCrossRefGoogle Scholar
  123. 123.
    Avontuur JA, Biewenga M, Buijk SL, Kanhai KJ, Bruining HA. Pulmonary hypertension and reduced cardiac output during inhibition of nitric oxide synthesis in human septic shock. Shock 1998;9:451–454.PubMedCrossRefGoogle Scholar
  124. 124.
    Jourdain M, Tournoys A, Leroy X, et al. Effects ofN omega-nitro-L-arginine methyl ester on the endotoxin-induced disseminated intravascular coagulation in porcine septic shock. Crit Care Med 1997;25:452–459.PubMedCrossRefGoogle Scholar
  125. 125.
    Bakker J, Grover R, McLuckie A, et al. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144–002). Crit Care Med 2004;32:1–12.PubMedCrossRefGoogle Scholar
  126. 126.
    Lopez A, Lorente JA, Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 2004;32:21–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Barth E, Radermacher P, Thiemermann C, Weber S, Georgieff M, Albuszies G. Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Crit Care Med 2006;34:307–313.PubMedCrossRefGoogle Scholar
  128. 128.
    Rosselet A, Feihl F, Markert M, Gnaegi A, Perret C, Liaudet L. Selective iN OS inhibition is superior to norepinephrine in the treatment of rat endotoxic shock. Am J Respir Crit Care Med 1998;157:162–170.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000;406(6797):782–787.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000; 97:13766–13771.PubMedCrossRefGoogle Scholar
  131. 131.
    Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000;165:5392–5396.PubMedCrossRefGoogle Scholar
  132. 132.
    Verbon A, Dekkers PE, ten Hove T, et al. IC14, an anti-CD14 antibody, inhibits endotoxin-mediated symptoms and inflammatory responses in humans. J Immunol 2001;166:3599–3605.PubMedCrossRefGoogle Scholar
  133. 133.
    Reinhart K, Gluck T, Ligtenberg J, et al. CD14 receptor occupancy in severe sepsis: results of a phase I clinical trial with a recombinant chimeric CD14 monoclonal antibody (IC14). Crit Care Med 2004;32:1100–1108.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999;285(5425):248–251.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Froidevaux C, Roger T, Martin C, Glauser MP, Calandra T. Macrophage migration inhibitory factor and innate immune responses to bacterial infections. Crit Care Med 2001;29:S13–15.CrossRefGoogle Scholar
  136. 136.
    Roger T, David J, Glauser MP, Calandra T. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 2001;414(6866):920–924.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Calandra T, Echtenacher B, Roy DL, etal. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med 2000;6(2): 164–170.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Bozza M, Satoskar AR, Lin G, et al. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med 1999;189:341–346.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bozza FA, Gomes RN, Japiassu AM, etal. Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock 2004;22:309–313.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Liz Whittaker
  • Simon Nadel

There are no affiliations available

Personalised recommendations