Enhanced Fixation of CO2 in Land and Aquatic Biomass

  • Angela DibenedettoEmail author


Biomass, either terrestrial or aquatic, can efficiently fix CO2 from a variety of sources, such as the atmosphere, power plant and industrial exhaust gases, and soluble (hydrogen)carbonate salts thanks to the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In addition to the carboxylation of ribulose that fixes CO2 into glucose (ca. 60%), used by the biomass as a source of energy and for building cellulose, RuBisCO also oxidizes the substrate (ca. 40%). Attempts have been made to engineer the enzyme for an enhanced carboxylation. Besides, efficient light-using organisms are under deep investigation. In particular, enhanced bio-fixation using microalgae has recently become an attractive approach to CO2 capture and C-recycling with a benefit derived from downstream utilization and application of the resulting microalgal biomass. This is a paradigmatic example of use of water and CO2 for stepping from the linear- to the circular-C-economy. It is of importance to select appropriate microalgal species that have a high growth rate, high CO2 fixation ability into valuable components, resistance to contaminants, low operation cost, and are easy to harvest and process. Strategies for the enhanced production of bioproducts and biofuels from microalgae, based on the manipulation of the strain physiology by controlling light, nutrient and other environmental conditions, which determine an efficient carbon conversion, are underway since long time. They are discussed in this Chapter together with an assessment of the value of the algal strain P. Tricornutum.


  1. 1.
  2. 2.
    Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73:147–152Google Scholar
  3. 3.
    Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47PubMedGoogle Scholar
  4. 4.
    Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR (2016) The costs of photorespiration to food production now and in the future. Annu Rev Plant Biol 67:107–129PubMedGoogle Scholar
  5. 5.
    Bowes G (1991) Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant, Cell Environ 14(8):795–806Google Scholar
  6. 6.
    Erb TJ, Zarzycki J (2016) Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. J Curr Opin Chem Biol 34:72–79Google Scholar
  7. 7.
    Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513(7519):547–550PubMedPubMedCentralGoogle Scholar
  8. 8.
    Greene DN, Whitney SM, Matsumura I (2007) Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J 404(3):517–524PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kreel NE, Tabita FR (2015) Serine 363 of a Hydrophobic Region of Archaeal Ribulose 1,5-bisphosphate carboxylase/oxygenase from Archaeoglobus fulgidus and Thermococcus kodakaraensis affects CO2/O2 substrate specificity and oxygen sensitivity. PLoS One 10(9):e0138351, 1–25Google Scholar
  10. 10.
    Mattozzi MD, Ziesack M, Voges MJ, Silver PA, Way JC (2013) Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth. Metab Eng 16:130–139PubMedGoogle Scholar
  11. 11.
    Reynolds MP, van Ginkel M, Ribaut JM (2000) Avenues for genetic modification of radiation use efficiency in wheat. J Exp Bot 51:459–473PubMedGoogle Scholar
  12. 12.
    Lorimer GH, Miziorko HM (1980) Carbamate formation on the ϵ-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry 19:5321–5324PubMedGoogle Scholar
  13. 13.
    Portis AR (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu Rev Plant Physiol Plant Mol Biol 43:415–437Google Scholar
  14. 14.
    Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13PubMedGoogle Scholar
  15. 15.
    Germain A, Hotto AM, Barkan A, Stern DB (2013) RNA processing and decay in plastids. Wiley Interdisc Rev: RNA 4:295–316Google Scholar
  16. 16.
    Whitney SM, Andrews TJ (2001) The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into RuBisCO. Plant Cell 13:193–205PubMedPubMedCentralGoogle Scholar
  17. 17.
    Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) supports photosynthesis and growth in tobacco. Proc Natl Acad Sci USA 98:14738–14743PubMedGoogle Scholar
  18. 18.
    Galmes J, Kapralov MV, Andralojc PJ, Conesa MA, Keys AJ, Parry MA, Flexas J (2014) Expanding knowledge of the RuBisCO kinetics variability in plant species: environmental and evolutionary trends. Plant, Cell Environ 37:1989–2001Google Scholar
  19. 19.
    Orr D, Alcantara A, Kapralov MV, Andralojc J, Carmo-Silva E, Parry MA (2016) Surveying RuBisCO diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol 172:702–717Google Scholar
  20. 20.
    Sharwood RE, Ghannoum O, Whitney SM (2016) Prospects for improving CO2 fixation in C3 crops through understanding C4 RuBisCO biogenesis and catalytic diversity. Curr Opin Plant Biol 31:135–142PubMedGoogle Scholar
  21. 21.
    von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672Google Scholar
  22. 22.
    Price GD, Howitt SM (2014) Plant science: towards turbocharged photosynthesis. Nature 513:497–498PubMedGoogle Scholar
  23. 23.
    Hanson MR, Lin MT, Carmo-Silva AE, Parry MA (2016) Towards engineering carboxysomes into C3 plants. Plant Journal 87:38–50PubMedGoogle Scholar
  24. 24.
    Long BM, Rae BD, Rolland V, Forster B, Price GD (2016) Cyanobacterial CO concentrating mechanism components: function and prospects for plant metabolic engineering. Curr Opin Plant Biol 31:1–8PubMedGoogle Scholar
  25. 25.
    Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA 107(19):8889–8894PubMedGoogle Scholar
  26. 26.
    Schwander T, von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ (2016) A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354(6314):900–904PubMedPubMedCentralGoogle Scholar
  27. 27.
    Dibenedetto A (2011) The potential of aquatic biomass for CO2-enhanced fixation and energy production. GHG 1(1):58–71Google Scholar
  28. 28.
    Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134PubMedGoogle Scholar
  29. 29.
    Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth research 21:3–16Google Scholar
  30. 30.
    Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131PubMedGoogle Scholar
  31. 31.
    Colman B, Huertas IE, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29:261–270PubMedGoogle Scholar
  32. 32.
    Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microb Biotechnol 79(5):707–718Google Scholar
  33. 33.
    Brown DL, Tregunna EB (1967) Inhibition of respiration during photosynthesis by some algae. Can J Bot 45:1135–1143Google Scholar
  34. 34.
    Aresta M, Alabiso G, Cecere E, Carone M, Dibenedetto A, Petrocelli A (2005) VIII conference on carbon dioxide utilization, Oslo, Book of abstracts, 56, 20–23Google Scholar
  35. 35.
    Kliphuis AM, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26(3):687–696PubMedGoogle Scholar
  36. 36.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306Google Scholar
  37. 37.
    Costa JAV, Linde GA, Atala DIP, Mibielli GM, Krüger RT (2000) Modelling of growth conditions for cyanobacterium Spirulina platensin in microcosmos. World J Microb Biotecnol 16(1):15–18Google Scholar
  38. 38.
    Dibenedetto A, Colucci A (2015) In: Aresta M, Dibenedetto A, Dumeignil F (eds) Biorefineries: an introduction. Berlin/Boston, Walter de Gruyter GmbH & Co KG, pp 57–77Google Scholar
  39. 39.
    European Environment Agency, Greenhouse Gas Emission Trends and Projections in Europe (2018) EEA report 16. EEA, Copenhagen, Denmark. ISSN 1977-8449Google Scholar
  40. 40.
    Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31(1):121–132Google Scholar
  41. 41.
    Yoon JH, Sim SJ, Kim M-S, Park TH (2002) High cell density culture of Anabaena variabilis using repeated injections of carbon dioxide for the production of hydrogen. Int J Hydrogen Energy 27:1265–1270Google Scholar
  42. 42.
    Yue L, Chen W (2005) Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers Manag 46:1868–1876Google Scholar
  43. 43.
    Boonma S, Chaiklangmuang S, Chaiwongsar S, Pekkoh J, Pumas C, Ungsethaphand T, Tongsiri S, Peerapornpisal Y (2015) Enhanced carbon dioxide fixation and bio-oil production of a microalgal consortium. Clean Soil Air Water 43(5):761–766Google Scholar
  44. 44.
    Liu XJ, Luo QX, Rakariyatham K, Cao Y, Goulette T, Liu X, Xiao H (2016) Antioxidation and anti-ageing activities of different stereoisomeric astaxanthin in vitro and in vivo. J Funct Foods 25:50–61Google Scholar
  45. 45.
    Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412PubMedPubMedCentralGoogle Scholar
  46. 46.
    Santos-Sanchez NF, Valadez-Blanco R, Hernandez-Carlos B, Torres-Arino A, Guadarrama-Mendoza PC, Salas-Coronado R (2016) Lipids rich in omega-3 polyunsaturated fatty acids from microalgae. Appl Microbiol Biotechnol 100:8667–8684PubMedGoogle Scholar
  47. 47.
    Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840Google Scholar
  48. 48.
    Renaud SM, Luong-Van JT (2006) Seasonal variation in the chemical composition of tropical australian marine macroalgae. J Appl Phycol 18:381–387Google Scholar
  49. 49.
    Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine synechococcus and prochlorococcus(cyanobacteria). J Phycol 43(3):485–496Google Scholar
  50. 50.
    Andersen T, Andersen F (2006) Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquat Bot 84:267–271Google Scholar
  51. 51.
    Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(2010):1037–1047Google Scholar
  52. 52.
    Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C (2005) Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Env Chem Lett 3(3):136–139Google Scholar
  53. 53.
    Wright HJ, Segur JB, Clark HV, Coburn SK, Langdon EE, DuPuis EN (1944) A report on ester interchange. Oil Soap 21:145–148Google Scholar
  54. 54.
    Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil 1. J Am Oil Chem Soc 63:1375–1380Google Scholar
  55. 55.
    Stern R, Hillion G (1990) Purification of esters. Eur Pat Appl EP 356317Google Scholar
  56. 56.
    Harrington KJ, D’Arcy-Evans C (1985) Transesterification in situ of sunflower seed oil. Ind Eng Chem Prod Res Dev 24:314–318Google Scholar
  57. 57.
    Graille J, Lozano P, Pioch D, Geneste P (1986) Essais d’alcoolyse d’huiles végétales avec des catalyseurs naturels pour la production de carburants diesels. Oleagineux 41:457–464Google Scholar
  58. 58.
    Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643Google Scholar
  59. 59.
    Schuchardt U, Sercheli R, Vargas RM (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210Google Scholar
  60. 60.
    Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinoviev S, Miertus S (2009) Catalytic applications in the production of biodiesel from vegetable oils. Chemsuschem 2(4):278–300PubMedGoogle Scholar
  61. 61.
    Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal A 363:1–10Google Scholar
  62. 62.
    Demirbas AH, Demirbas I (2007) Importance of rural bioenergy for developing countries. Energy Convers Manag 48:2386–2398Google Scholar
  63. 63.
    Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign, IL. ISBN: 9781893997622Google Scholar
  64. 64.
    Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373Google Scholar
  65. 65.
    Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116Google Scholar
  66. 66.
    (a) Aresta M, Dibenedetto A, Pastore C (2004) Group 5 (V, Nb and Ta) element-alkoxides as catalysts in the trans-esterification of ethylene-carbonate with methanol, ethanol and allyl alcohol. In: Studies on surface sciences and catalysis (Carbon Dioxide Utilization for Global Sustainability), 153, 221. (b) Dibenedetto A, Aresta M, Angelini A, Ethiraj J, Aresta BM (2012) Synthesis, characterization, and use of Nb V/Ce IV-mixed oxides in the direct carboxylation of ethanol by using pervaporation membranes for water removal. Chem A Eur J 18(33):10524–10534Google Scholar
  67. 67.
    Angelini A, Dibenedetto A, Fasciano S, Aresta M (2017) Synthesis of di-n-butyl carbonate from n-butanol: comparison of the direct carboxylation with butanolysis of urea by using recyclable heterogeneous catalysts. Catal Today 281:371–378Google Scholar
  68. 68.
    Dibenedetto A, Angelini A, Colucci A, di Bitonto L, Pastore C, Aresta BM, Giannini C, Comparelli R (2016) Tunable mixed oxides: efficient agents for the simultaneous trans-esterification of lipids and esterification of free fatty acids from bio-oils for the effective production of FAMEs. Int J Renew Energy Biofuels. Article ID 204112.
  69. 69.
    Dibenedetto A, Angelini A, Aresta M, Ethiraj J, Fragale C, Nocito F (2011) Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 67:1308–1313Google Scholar
  70. 70.
    Dibenedetto A, Nocito F, Papai I, Angelini A, Mancuso R, Aresta M (2013) Catalytic synthesis of hydroxymetyl-2-oxazolidinones from glycerol or glycerol carbonate and urea. Chemsuschem 6(2):345–352PubMedGoogle Scholar
  71. 71.
    Ben-Amotz AW, Polle JE, Subba DV, Rao DV (eds) (2008) The alga Dunaliella: biodiversity, phisiology, genomics and biotechnology. Science PublGoogle Scholar
  72. 72.
    Aresta M, Dibenedetto A (2019) Beyond fractionation in the utilization of microalgal components. In: Pires JCM and Goncalves ALC (eds), Bioenergy with carbon capture and storage. ISBN 9780128162293, Elsevier PublGoogle Scholar
  73. 73.
    Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416PubMedGoogle Scholar
  74. 74.
    Hill RA, Connolly JD (2018) Triterpenoids. Nat Prod Rep 35:1294–1329PubMedGoogle Scholar
  75. 75.
    Tarkowská D, Strnad M (2018) Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 1–16Google Scholar
  76. 76.
    Kumar V, Nanda M, Joshi HC, Singh A, Sharma S, Verma M (2018) Production of biodiesel and bioethanol using algal biomass harvested from fresh water river. Renew Energy 116:606–612Google Scholar
  77. 77.
    Knothe G, Dunn RO, Bagby MO (1997) Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. In: Fuels and chemicals from biomass, Chapter 10, pp 172–208, ACS symposium series, vol 666. ISBN 13: 9780841235083Google Scholar
  78. 78.
    de Almeida VF, García-Moreno PJ, Guadix A, Guadix EM (2015) Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: optimization of fuel properties. Fuel Process Technol 133:152–160Google Scholar
  79. 79.
    Huntley M, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigat Adapt Strat Global Change 12:573–608Google Scholar
  80. 80.
    Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436PubMedGoogle Scholar
  81. 81.
    Sheehan J, Dunahay T, Benemann J, Roessler PA (1998) A look back at the U.S. DOE aquatic species program: biodiesel from algae. NREL close out reportGoogle Scholar
  82. 82.
    John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Biores Technol 102(1):186–193Google Scholar
  83. 83.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Review: commercial application of microalgae. J Biosci Bioeng 101:87–96Google Scholar
  84. 84.
    Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142Google Scholar
  85. 85.
    Rodjaroen S, Juntawong N, Mahakhant A, Miyamoto K (2007) High Biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart J Nat Sci 41:570–575Google Scholar
  86. 86.
    Kim MS, Baek JS, Yun YS, Sim SJ, Park S, Kim SC (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31:812–816Google Scholar
  87. 87.
    Anandraj A, White S, Mutanda T (2019) Photosystem I fluorescence as a physiological indicator of hydrogen production in Chlamydomonas reinhardtii. Biores Technol 273:313–319Google Scholar
  88. 88.
    Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  89. 89.
    Rafiqul IM, Hassan A, Sulebele G, Orosco CA, Roustaian P, Jalal KCA (2003) Salt stress culture of blue-green algae Spirulina fusiformis. Pakistan J Biol Sci 6:648–650Google Scholar
  90. 90.
    Shirnalli GG, Kaushik MS, Kumar A, Abraham G, Singh PK (2018) Isolation and characterization of high protein and phycocyanin producing mutants of Arthrospira platensis. J Basic Microbiol 58(2):162–171PubMedGoogle Scholar
  91. 91.
    Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5578472Google Scholar
  92. 92.
    Sivaramakrishnan R, Incharoensakdi A (2018) Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 217:458–466Google Scholar
  93. 93.
    de Farias Silva C E, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51(11):1833–1842Google Scholar
  94. 94.
    Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378Google Scholar
  95. 95.
    Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68Google Scholar
  96. 96.
    Jain MS, Kalamdhad AS (2018) A review on management of Hydrilla verticillata and its utilization as potential nitrogen-rich biomass for compost or biogas production. Bioresour Technol Rep 1:69–78Google Scholar
  97. 97.
    Vergara-Fernández A, Vargas G, Alarcón N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenerg 32(4):338–344Google Scholar
  98. 98.
    González-González LM, Correa DF, Ryan S, Jensen PD, Pratt S, Schenk PM (2018) Integrated biodiesel and biogas production from microalgae: towards a sustainable closed loop through nutrient recycling. Renew Sustain Energy Rev 82:1137–1148Google Scholar
  99. 99.
    Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2:207–213Google Scholar
  100. 100.
    Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, Keppler F (2016) Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters. Biogeosciences 13:3163–3174Google Scholar
  101. 101.
    Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111Google Scholar
  102. 102.
  103. 103.
    Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226Google Scholar
  104. 104.
    Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14PubMedGoogle Scholar
  105. 105.
    Luiten EEM, Akkerman I, Koulman A, Kamermans P, Reith H, Barbosa MJ, Sipkema D, Wijffels RH (2003) Realizing the promises of marine biotechnology. Biomol Eng 20:429–439PubMedGoogle Scholar
  106. 106.
    Abril R, Garrett J, Zeller SG, Sander WJ, Mast RW (2003) Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part V: target animal safety/toxicity study in growing swine. Regul Toxicol Pharm 37:73–82Google Scholar
  107. 107.
    Wu BCP, Stephen D, Morgenthaler GE, Jones DV (2015) US Patent application no. 14/505, 427Google Scholar
  108. 108.
  109. 109.
    Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34:633–637Google Scholar
  110. 110.
    Puri M (2017) Algal biotechnology for pursuing omega-3 fatty acid (bioactive) production. Microbiology Australia 38(2):85–88Google Scholar
  111. 111.
    Prasanna RA, Sood A, Jaiswal P, Nayak S, Gupta V, Chaudhary V, Joshi M, Natarajan C (2010) Rediscovering cyanobacteria as valuable sources of bioactive compounds. Appl Biochem Microbiol 46:119–134Google Scholar
  112. 112.
    Chaneva G, Urnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum—a prospective phycobiliprotein producing strain. J Appl Phycol 19:537–544Google Scholar
  113. 113.
    Prasanna RA, Sood A, Suresh S, Nayak S, Kaushik BD (2007) Potentials and applications of algal pigments in biology and industry. Acta Bot Hung 49:131–156Google Scholar
  114. 114.
    Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agri Food Chem 55:8516–8522Google Scholar
  115. 115.
    Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K (2004) Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARg ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta 1675:113–119PubMedGoogle Scholar
  116. 116.
    Bolhassani A (2015) Cancer chemoprevention by natural carotenoids as an efficient strategy. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 15(8):1026–1031Google Scholar
  117. 117.
    Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95PubMedGoogle Scholar
  118. 118.
    Becker EW (1994) Microalgae. Biotechnology and microbiology. Cambridge University Press, Cambridge. ISBN 978-0-521-06113Google Scholar
  119. 119.
    Wijffels RH (2007) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26(1):26–31PubMedGoogle Scholar
  120. 120.
    Cognis (2008) Cognis Launches Betatene_10% WDP. Cognis [Online] Cognis, 22 10 2008.
  121. 121.
    Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J (EEMJ) 5(3)Google Scholar
  122. 122.
    Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449PubMedGoogle Scholar
  123. 123.
    Vilchez C, Forjan E, Cuaresma M, Bedmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333PubMedPubMedCentralGoogle Scholar
  124. 124.
    Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194Google Scholar
  125. 125.
    Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29(6):568–574PubMedPubMedCentralGoogle Scholar
  126. 126.
    Tso MOM, Lam T-T (1996) Method of retarding and ameliorating central nervous system and eye damage. US Patent 5527533. The method was called Deep Extract™Google Scholar
  127. 127.
    Paust J (1996) Carotenoids, vol 2: Synthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds), Chap 3, Part VII, pp 259–292. Birkhäuser, BaselGoogle Scholar
  128. 128.
    Ernst H (1996) Carotenoids, vol 2: Synthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds), Chap 2, Part III, pp 79–102. Birkhäuser, BaselGoogle Scholar
  129. 129.
    Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466Google Scholar
  130. 130.
    Widmer E, Zell R, Broger EA, Crameri Y, Wagner HP, Dinkel J, Schlageter M, Lukác T (1981) Technische Verfahren zur Synthese von Carotinoiden und verwandten Verbindungen aus 6-Oxo-isophoron. II. Ein neues Konzept für die Synthese von (3RS, 3′ RS)-Astaxanthin. Helv Chim Acta 64:2436–2446Google Scholar
  131. 131.
    Ernst H, Dobler W, Paust J, Rheude U (1994) BASF, Europ. Pat. 633 258Google Scholar
  132. 132.
    Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196PubMedGoogle Scholar
  133. 133.
    Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29(6):568–574PubMedPubMedCentralGoogle Scholar
  134. 134.
    Nguyen KD (2013) Astaxanthin: a comparative case of synthetic vs. natural production. Chemical and Biomolecular Engineering Publications and other works.
  135. 135.
    Algatech (2004) Astaxanthin—the algatech story [Online]. Algatech.
  136. 136.
    Borowitzka MA (2006) Biotechnological & environmental applications of microalgae. Biotechnological & Environmental Applications of Microalgae.
  137. 137.
    Eriksen N (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14PubMedGoogle Scholar
  138. 138.
    Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136Google Scholar
  139. 139.
    Harnedy P, FitzGerald RJ (2011) Review of bioactive protein, peptides and amino acids from macroalgae. J Phycol 47:218–232PubMedGoogle Scholar
  140. 140.
    Gotelli IB, Cleland R (1968) Differences in the occurrence and distribution of hydroxyproline-proteins among the algae. Am J Bot 55:907–914PubMedGoogle Scholar
  141. 141.
    Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28Google Scholar
  142. 142.
  143. 143.
    Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. TIBTECH 8:71–78Google Scholar
  144. 144.
    Gombotz WR, Wee SF (1998) Protein release from alginate matrices. Adv Drug Rev 31:267–285Google Scholar
  145. 145.
    Shahidi F, Abuzaytoun R (2005) Chitin, Chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr. Res 49:93–135.
  146. 146.
    Mendhulkar VD, Shetye LA (2017) Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind Biotechnol 13(2):85–93Google Scholar
  147. 147.
    Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbüchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81–86PubMedPubMedCentralGoogle Scholar
  148. 148.
    Burlew JS (1953) Algal culture: from laboratory to pilot plant. Carnegie Inst., Washington Publ.Google Scholar
  149. 149.
    Tamiya H, Iwamura T, Shibata K, Hase E, Nihei T (1953) Correlation between photosynthesis and light-independent metabolism in the growth of Chlorella. Biochim Biophys Acta 12:23–40PubMedGoogle Scholar
  150. 150.
    Benson AA (2005) Hiroshi Tamiya. Biogr Mem 86:335–353Google Scholar
  151. 151.
    Cysewski GR (1994) (Cyanotech Corporation): ocean-chill drying of microalgae and microalgal products. US5276977 AGoogle Scholar
  152. 152.
    Sakakibara M, Fukuda Y, Sekiya A, Nishihashi H, Hirahashi T (2008) Process for treating spirulina. US7326558 B2, Dainippon Ink And Chemicals, Inc.Google Scholar
  153. 153.
    Ayalon O (2014) Astaxanthin derivatives for heat stress prevention and treatment. WO2014057493 A1, Algatechnologies Ltd.Google Scholar
  154. 154.
    Franklin S, Somanchi A, Espina K, Rudenko G, Chua P (2011) Recombinant microalgae cells producing novel oils. US7935515 B2, Solazyme, Inc.Google Scholar
  155. 155.
    Franklin S, Somanchi A, Espina K, Rudenko G, Chua P (2017) Production of tailored oils in heterotrophic microorganisms. EP3098321 A3, TerraVia Holdings, Inc.Google Scholar
  156. 156.
    Roussis SG, Cranford RJ (2014) Compositions of matter comprising extracted algae oil. US20140249338 A1, Sapphire Energy, Inc.Google Scholar
  157. 157.
    Ryan C (2009), In: Hartley A (ed) The promise of algae biofuels. Cultivating clean energy. NRDC ReportGoogle Scholar
  158. 158.
    Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE(1). Highly-effective photobioreactor system. Energy Convers Manag 38:S487–S492Google Scholar
  159. 159.
    Sapphire Energy Inc (2012) Sapphire Energy Announces $ 144 Million Series C Funding. Press releaseGoogle Scholar
  160. 160.
    Solazyme Inc (2016) Solazyme focuses its breakthrough algae platform to redefine the future of food. Press releaseGoogle Scholar
  161. 161.
    Muller-Feuga A, Le Gue´des R, Herve´ A, Durand P. (1998) Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum. J Appl Phycol 10(1):83–90Google Scholar
  162. 162.
    van Egmond K, Bresser T, Bouwman L (2002) The European nitrogen case. Ambio 31(2):72–78PubMedGoogle Scholar
  163. 163.
    de Fraiture C, Giordano M, Liao Y (2008) Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10(Supplement 1):67–81Google Scholar
  164. 164.
    Jez S, Spinelli D, Fierro A, Dibenedetto A, Aresta M, Busi E, Basosi R (2017) Comparative life cycle assessment study on environmental impact of oil production from micro-algae and terrestrial oilseed crops. Biores Technol 239:266–275Google Scholar
  165. 165.
    Boyd AR, Champagne P, McGinn PJ, MacDougall KM, Melanson JE, Jessop PG (2012) Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Biores Technol 118:628–632Google Scholar
  166. 166.
    Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energ 88:3524–3531Google Scholar
  167. 167.
    Hess SK, Lepetit B, Kroth PG, Mecking S (2018) Production of chemicals from microalgae lipids—status and perspectives. Eur J Lipid Sci Technol 120:1700152Google Scholar
  168. 168.
    Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516PubMedGoogle Scholar
  169. 169.
    FAO (2010) Designing viable algal bioenergy co-production concepts. In: Algae-based biofuels applications and co-products. n° 44, Roma, FAOGoogle Scholar
  170. 170.
    Aresta M, Dibenedetto A, He LN (2013) Analysis of demand for captured CO2 and products from CO2 conversion. TCGR reportGoogle Scholar
  171. 171.
    Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29(1):24–27PubMedGoogle Scholar
  172. 172.
    Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Bioref 4:287–295Google Scholar
  173. 173.
    Dibenedetto A, Colucci A, Aresta M (2016) The need to implement an efficient biomass fractionation and full utilization based on the concept of “biorefinery” for a viable economic utilization of microalgae. Env Sci Pollut Res 23:22274–22283Google Scholar
  174. 174.
    Buono S, Colucci A, Angelini A, Langelotti AL, Massa M, Martello A, Fogliano V, Dibenedetto A (2016) Productivity and biochemical composition of Tetradesmus obliquus and Pheodactylum tricornutum: effect of different cultivation approaches. J Appl Phycol 28(6):3179–3192Google Scholar
  175. 175.
    Lai H-M, Padua GW, Wei LS (1997) Properties and microstructure of zein sheets plasticized with palmitic and stearic acids. Cereal Chem 74(1):83–90Google Scholar
  176. 176.
    Aresta M, Dibenedetto A, Cornacchia D (2017) Mixed oxides for the oxidative cleavage of lipids using oxygen to afford mono- and di-carboxylic acids WO2017202955A1Google Scholar
  177. 177.
    Köckritz A, Martin A (2011) Synthesis of azelaic acid from vegetable oil-based feedstocks. Eur J Lipid Sci Technol 113:83–89Google Scholar
  178. 178.
    Janz A, Köckritz A, Habil MA (2011) Producing mono- and dicarboxylic acids, useful in pharmaceutical and plastic industries, comprises oxidatively splitting oxidized derivatives of vegetable oil or fat with molecular oxygen or air using gold-containing catalyst and solvent. Patent DE 102010002603 A1. BrGoogle Scholar
  179. 179.
    Brandhorst M, Dubois J-L (2015) Method for cleaving unsaturated fatty chains. US Patent 9035079Google Scholar
  180. 180.
    Dibenedetto A, Nocito F in preparationGoogle Scholar
  181. 181.
    Mäki-Arvela P, Kuusisto J, Sevilla EM, Simakova I, Mikkola J-P, Myllyoja J, Salmi T, Murzin DY (2008) Catalytic hydrogenation of linoleic acid to stearic acid over different Pd- and Ru-supported catalysts. Appl Cat A 345(2):201–212Google Scholar
  182. 182.
    Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res 19, 21(1):6–16Google Scholar
  183. 183.
    Li J, Liu Y, Cheng JJ, Mos M, Daroch M (2015) Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compound. New Biotechnol 32(6):588–596Google Scholar
  184. 184.
    Yen H-W, Hu I-C, Chen C-Y, Ho S-H, Lee D-J, Chango J-S (2013) Microalgae-based biorefinery-From biofuels to natural products. Bioresour Technol 135:166–174Google Scholar
  185. 185.
    Dibenedetto A, Aresta M, Pastore C, di Bitonto L, Angelini A, Quaranta E (2015) Conversion of fructose into 5-HMF: a study on the behaviour of heterogeneous Ce-based catalysts and their stability in aqueous media under mild conditions. RSC Adv 5:26941–26948Google Scholar
  186. 186.
    Dibenedetto A, Aresta M, di Bitonto L, Pastore C (2016) Organic carbonates: efficient extraction solvents for the synthesis of 5-HMF in aqueous media witn Ce-phosphates as catalysts. ChemSusChem 9:118–125Google Scholar
  187. 187.
    Ventura M, Aresta M, Dibenedetto A (2016) Selective Aerobic Oxidation of 5‐(Hydroxymethyl)furfural to 5‐Formyl‐2‐furancarboxylic acid in water. ChemSusChem 9(10):1096–1100Google Scholar
  188. 188.
    Dibenedetto A, Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F (2018) Selective aerobic oxidation of 5‐(hydroxymethyl) furfural to 2, 5‐diformylfuran or 2‐formyl‐5‐furancarboxylic acid in water using MgO·CeO2 mixed oxides as catalysts. ChemSusChem 11(8):1305–1315Google Scholar
  189. 189.
    Nocito F, Ventura M, Aresta M, Dibenedetto A (2018) Selective oxidation of 5-(Hydroxymethyl)furfural to DFF using water as solvent and oxygen as oxidant with earth-crust-abundant mixed oxides. ACS Omega 3(12):18724–18729Google Scholar
  190. 190.
    Ventura M, Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A (2018) Tunable mixed oxides based on CeO2 for the selective aerobic oxidation of 5-(hydroxymethyl)furfural to FDCA in water. Green Chem 20:3921–3926 Google Scholar
  191. 191.
    Dibenedetto A, Ventura M, Williamson D, Lobefaro F, Jones MD, Mattia D, Nocito F, Aresta M (2018) Sustainable synthesis of oxalic (and succinic) acid via aerobic oxidation of C6 polyols by using M@ CNT/NCNT (M = Fe, V) based catalysts in mild conditions. ChemSusChem 11(6):1073–1081Google Scholar
  192. 192.
    Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosci Instit 1–178Google Scholar
  193. 193.
    Aresta M, Dibenedetto A, Dumeignil F (Eds) (2015) Biorefineries: an introduction Walter de Gruyter. GmbH & Co KG, Berlin/Boston. ISBN 978-3-11-033158-5Google Scholar
  194. 194.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648Google Scholar
  195. 195.
    Food and Agriculture Organization of the United Nations.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry and CIRCCUniversity of Bari “Aldo Moro”BariItaly

Personalised recommendations