Stem Cell Therapy in Wound Care

  • Makram E. Aljghami
  • Saeid Amini-NikEmail author
Part of the Updates in Clinical Dermatology book series (UCD)


Stem cell therapy has become an attractive new approach in wound care due to the limited effectiveness of traditional treatment methods. This is especially true in chronic wounds, where healing takes much longer times than acute wounds due to impairments in the various healing stages. However, challenges remain in the application of stem cell therapy due to different concerns such as cell viability, differentiation, immune rejection, or risks of tumor growth. New sources of stem cells are being researched, and different methods of delivery are being developed in order to improve stem cell delivery and enhance wound healing and skin regeneration. This chapter aims to discuss some of the advancements in stem cell therapy in the context of skin wound repair.


Stem cell therapy Wound care Chronic wounds Cell viability Differentiation Immune rejection Tumor growth 


  1. 1.
    Control CfD, Prevention. National diabetes statistics report, 2017. Atlanta, GA: Centers for Disease Control and Prevention; 2017.Google Scholar
  2. 2.
    Hosgood G. Stages of wound healing and their clinical relevance. Vet Clin North Am Small Anim Pract. 2006;36(4):667–85.CrossRefGoogle Scholar
  3. 3.
    Janis J, Attinger C. The basic science of wound healing. Plast Reconstr Surg. 2006;117(7 Suppl):12S–34S.PubMedGoogle Scholar
  4. 4.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.CrossRefGoogle Scholar
  5. 5.
    Greenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol. 1990;136(6):1235.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Kao H-K, Chen B, Murphy GF, Li Q, Orgill DP, Guo L. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Ann Surg. 2011;254(6):1066–74.CrossRefGoogle Scholar
  7. 7.
    Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grinnell F. Fibronectin and wound healing. J Cell Biochem. 1984;26(2):107–16.CrossRefGoogle Scholar
  9. 9.
    Supuran CT, Scozzafava A. Matrix metalloproteinases (MMPs). London\New York: Taylor & Francis; 2002.Google Scholar
  10. 10.
    Salo T, Mäkelä M, Kylmäniemi M, Autio-Harmainen H, Larjava H. Expression of matrix metalloproteinase-2 and-9 during early human wound healing. Lab Invest. 1994;70(2):176–82.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9(1):283–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Amento EP, Beck LS. TGFb and wound healing. Clin Appl TGFb. 2008;157:115–29.Google Scholar
  13. 13.
    Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, Cheon HG, et al. Keratinocyte growth factor. Cell Biol Int. 1995;19(5):399–411.CrossRefGoogle Scholar
  14. 14.
    Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48(1):193–216.CrossRefGoogle Scholar
  15. 15.
    Nissen NN, Polverini P, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol. 1998;152(6):1445.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.CrossRefGoogle Scholar
  17. 17.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349.CrossRefGoogle Scholar
  18. 18.
    Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002;124(2):214–22.CrossRefGoogle Scholar
  19. 19.
    Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176(2):26S–38S.CrossRefGoogle Scholar
  20. 20.
    Harding K, Morris H, Patel G. Healing chronic wounds. BMJ. 2002;324(7330):160–3.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen A, Andersen CB, Givskov M, et al. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen. 2011;19(3):387–91.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nyanhongo GS, Sygmund C, Ludwig R, Prasetyo EN, Guebitz GM. An antioxidant regenerating system for continuous quenching of free radicals in chronic wounds. Eur J Pharm Biopharm. 2013;83(3):396–404.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    James GA, Swogger E, Wolcott R, deLancey Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004;187(5):S65–70.CrossRefGoogle Scholar
  25. 25.
    Mast BA, Schultz GS. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4(4):411–20.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Loots MA, Lamme EN, Zeegelaar J, Mekkes JR, Bos JD, Middelkoop E. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Investig Dermatol. 1998;111(5):850–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127(3):514–25.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Snyder RJ, Hanft JR. Diabetic foot ulcers—effects on quality of life, costs, and mortality and the role of standard wound care and advanced-care therapies in healing: a review. Ostomy Wound Manage. 2009;55(11):28.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD. The 1999 clinical research award cultured skin substitutes combined with integra artificial skin to replace native skin autograft and allograft for the closure of excised full–thickness burns: Oxford University Press. 1999;20(9):453–61.Google Scholar
  32. 32.
    Hunt JA, Moisidis E, Haertsch P. Initial experience of Integra in the treatment of post-burn anterior cervical neck contracture. Br J Plast Surg. 2000;53(8):652–8.CrossRefGoogle Scholar
  33. 33.
    Zhong S, Zhang Y, Lim C. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):510–25.CrossRefGoogle Scholar
  34. 34.
    Signorini M, Clementoni MT. Clinical evaluation of a new self-drying silicone gel in the treatment of scars: a preliminary report. Aesthet Plast Surg. 2007;31(2):183–7.CrossRefGoogle Scholar
  35. 35.
    Karagoz H, Yuksel F, Ulkur E, Evinc R. Comparison of efficacy of silicone gel, silicone gel sheeting, and topical onion extract including heparin and allantoin for the treatment of postburn hypertrophic scars. Burns. 2009;35(8):1097–103.CrossRefGoogle Scholar
  36. 36.
    Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm. 2011;8(5):1471–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Laverdet B, Micallef L, Lebreton C, Mollard J, Lataillade JJ, Coulomb B, et al. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathol Biol. 2014;62(2):108–17.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Strong AL, Neumeister MW, Levi B. Stem cells and tissue engineering: regeneration of the skin and its contents. Clin Plast Surg. 2017;44(3):635–50.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.CrossRefGoogle Scholar
  40. 40.
    Watt FM. Epidermal stem cells: markers, patterning and the control of stem cell fate. Philos Trans t R Soc Lond B Biol Sci. 1998;353(1370):831–7.CrossRefGoogle Scholar
  41. 41.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.CrossRefGoogle Scholar
  42. 42.
    Menasche P, Vanneaux V, Fabreguettes JR, Bel A, Tosca L, Garcia S, et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. 2015;36(12):743–50.CrossRefGoogle Scholar
  43. 43.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.CrossRefGoogle Scholar
  44. 44.
    Perrier AL, Tabar V, Barberi T, Rubio ME, Bruses J, Topf N, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A. 2004;101(34):12543–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson’s disease. Neurodegener Dis. 2007;4(4):339–47.CrossRefGoogle Scholar
  46. 46.
    Chung Y, Klimanskaya I, Becker S, Li T, Maserati M, Lu S-J, et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. 2008;2(2):113–7.CrossRefGoogle Scholar
  47. 47.
    Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci. 2010;28(4):589–603.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.CrossRefGoogle Scholar
  49. 49.
    Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr Opin Cell Biol. 2004;16(6):693–9.CrossRefGoogle Scholar
  50. 50.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow–derived cells. Arch Dermatol. 2003;139(4):510–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, et al. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 2013;4(6):e685.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gugerell A, Kober J, Schmid M, Nickl S, Kamolz L, Keck M. Botulinum toxin A and lidocaine have an impact on adipose-derived stem cells, fibroblasts, and mature adipocytes in vitro. J Plast Reconstr Aesthet Surg. 2014;67(9):1276–81.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–52.CrossRefGoogle Scholar
  59. 59.
    Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, et al. Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J. 2012;76(7):1750–60.CrossRefGoogle Scholar
  60. 60.
    Pelizzo G, Avanzini MA, Cornaglia AI, Osti M, Romano P, Avolio L, et al. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med. 2015;13(1):219.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Uysal CA, Tobita M, Hyakusoku H, Mizuno H. The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Adv Wound Care. 2014;3(6):405–13.CrossRefGoogle Scholar
  62. 62.
    Mendez JJ, Ghaedi M, Sivarapatna A, Dimitrievska S, Shao Z, Osuji CO, et al. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials. 2015;40:61–71.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20(5):655–67.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, Fibbe WE, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Troyer DL, Weiss ML. Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Luo G, Cheng W, He W, Wang X, Tan J, Fitzgerald M, et al. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen. 2010;18(5):506–13.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sabapathy V, Sundaram B, Sreelakshmi V, Mankuzhy P, Kumar S. Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One. 2014;9(4):e93726.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shi S, Jia S, Liu J, Chen G. Accelerated regeneration of skin injury by co-transplantation of mesenchymal stem cells from Wharton’s jelly of the human umbilical cord mixed with microparticles. Cell Biochem Biophys. 2015;71(2):951–6.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MDF, et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells. 2008;26(1):146–50.CrossRefGoogle Scholar
  71. 71.
    Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell. 1995;80(1):83–93.CrossRefGoogle Scholar
  72. 72.
    Fuchs E, Nowak J, editors. Building epithelial tissues from skin stem cells. Cold Spring Harbor symposia on quantitative biology: Cold Spring Harbor Laboratory Press. 2008;73:333–50.Google Scholar
  73. 73.
    Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development. 1999;126(11):2409–18.PubMedGoogle Scholar
  74. 74.
    Waters JM, Richardson GD, Jahoda CA, editors. Hair follicle stem cells. Seminars in cell & developmental biology: Elsevier. 2007;18(2):245–54.Google Scholar
  75. 75.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303(5656):359–63.CrossRefGoogle Scholar
  76. 76.
    Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Oshima H, Inoue H, Matsuzaki K, Tanabe M, Kumagai N. Permanent restoration of human skin treated with cultured epithelium grafting-wound healing by stem cell based tissue engineering. Hum Cell. 2002;15(3):118–28.CrossRefGoogle Scholar
  78. 78.
    Shen Y, Dai L, Li X, Liang R, Guan G, Zhang Z, et al. Epidermal stem cells cultured on collagen-modified chitin membrane induce in situ tissue regeneration of full-thickness skin defects in mice. PLoS One. 2014;9(2):e87557.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lough DM, Yang M, Blum A, Reichensperger JD, Cosenza NM, Wetter N, et al. Transplantation of the LGR6+ epithelial stem cell into full-thickness cutaneous wounds results in enhanced healing, nascent hair follicle development, and augmentation of angiogenic analytes. Plast Reconstr Surg. 2014;133(3):579–90.CrossRefGoogle Scholar
  80. 80.
    Zhang G, Hu Q, Braunlin EA, Suggs LJ, Zhang J. Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix. Tissue Eng Part A. 2008;14(6):1025–36.CrossRefGoogle Scholar
  81. 81.
    Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med. 2014;3(9):1079–89.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zimmerlin L, Rubin JP, Pfeifer ME, Moore LR, Donnenberg VS, Donnenberg AD. Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy. 2013;15(1):102–8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow–derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299–312.CrossRefGoogle Scholar
  84. 84.
    Kaminski A, Klopsch C, Mark P, Yerebakan C, Donndorf P, Gäbel R, et al. Autologous valve replacement—CD133+ stem cell-plus-fibrin composite-based sprayed cell seeding for intraoperative heart valve tissue engineering. Tissue Eng Part C Methods. 2010;17(3):299–309.CrossRefGoogle Scholar
  85. 85.
    Wu X, Wang G, Tang C, Zhang D, Li Z, Du D, et al. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent. J Biomed Mater Res A. 2011;98(3):442–9.CrossRefGoogle Scholar
  86. 86.
    Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol. 2005;23(4):413–8.CrossRefGoogle Scholar
  87. 87.
    Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–12.CrossRefGoogle Scholar
  88. 88.
    Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.CrossRefGoogle Scholar
  89. 89.
    Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855–63.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2016;9(1):015006.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Liu W, Zhang YS, Heinrich MA, De Ferrari F, Jang HL, Bakht SM, et al. Rapid continuous multimaterial extrusion bioprinting. Adv Mater. 2017;29(3):1604630.CrossRefGoogle Scholar
  93. 93.
    Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, et al. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink. Adv Mater. 2016;28(4):677–84.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Hakimi N, Cheng R, Leng L, Sotoudehfar M, Ba PQ, Bakhtyar N, et al. Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip. 2018;18(10):1440–51.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci. 1994;91(21):9857–60.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sunnybrook Health Science CentreRoss Tilley Burn CentreTorontoCanada
  2. 2.Faculty of Medicine, Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada

Personalised recommendations