Advertisement

Cellular- and Acellular-Based Therapies: Skin Substitutes and Matrices

  • Brian CahnEmail author
  • Hadar Lev-Tov
Chapter
  • 27 Downloads
Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

Recalcitrant wounds pose a challenge to the dermatologist. In recent years, many skin substitutes have been developed and are broadly classified as either acellular or cellular. These skin substitutes are to be used in concert with standard of care to provide the stalled wound with a scaffold and key elements such as cytokines, growth factors, and extracellular matrix substances. Skin substitutes help initiate and accelerate wound healing through granulation, cell migration, re-vascularization, and re-epithelialization. Wounds of varying etiologies have been shown to benefit from the multitude of acellular and cellular skin substitutes that are available. This chapter provides clinically relevant background and practical guidance about skin substitutes to allow dermatologists to effectively incorporate these powerful tools into their wound healing armamentarium.

Keywords

Skin substitute Wound healing Acellular matrix Cellular matrix Epidermal skin graft Dermal skin graft Composite graft Venous leg ulcer Diabetic foot ulcer 

Abbreviations

BLCCs

Bilayered living cellular constructs

CA

Cadaveric allograft

CDM

Collagen dermal matrix

CEAs

Cultured epidermal autografts

CPM

Cryopreserved placental membrane

DFU

Diabetic foot ulcer

DHACM

Dehydrated human amnion/chorion membrane

DRT

Dermal regeneration template

ECM

Extracellular matrix

PU

Pressure ulcer

VLU

Venous leg ulcer

References

  1. 1.
    Ramanujam CL, Zgonis T. An overview of autologous skin grafts and advanced biologics for the diabetic foot. Clin Podiatr Med Surg. 2012;29(3):435–41.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mazzola IC, Mazzola RF. History of reconstructive rhinoplasty. Facial Plast Surg. 2014;30(3):227–36.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Halim AS, Khoo TL, Mohd Yussof SJ. Biologic and synthetic skin substitutes: an overview. Indian J Plast Surg. 2010;43(Suppl):S23–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413–28.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science. 1982;215(4529):174–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Woo K, Ayello EA, Sibbald RG. The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care. 2007;20(2):99–117; quiz 8–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stone RC, Stojadinovic O, Rosa AM, Ramirez HA, Badiavas E, Blumenberg M, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med. 2017;9(371).Google Scholar
  9. 9.
    Kallis PJ, Friedman AJ, Lev-Tov H. A guide to tissue-engineered skin substitutes. J Drugs Dermatol. 2018;17(1):57–64.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Sinha S, Schreiner AJ, Biernaskie J, Nickerson D, Gabriel VA. Treating pain on skin graft donor sites: review and clinical recommendations. J Trauma Acute Care Surg. 2017;83(5):954–64.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci. 2016;73(18):3453–72.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018–29.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nathoo R, Howe N, Cohen G. Skin substitutes: an overview of the key players in wound management. J Clin Aesthet Dermatol. 2014;7(10):44–8.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Shores JT, Gabriel A, Gupta S. Skin substitutes and alternatives: a review. Adv Skin Wound Care. 2007;20(9 Pt 1):493–508; quiz 9–10.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lazarus GS, Cooper DM, Knighton DR, Margolis DJ, Pecoraro RE, Rodeheaver G, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994;130(4):489–93.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Broussard KC, Powers JG. Wound dressings: selecting the most appropriate type. Am J Clin Dermatol. 2013;14(6):449–59.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Morton LM, Phillips TJ. Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol. 2016;74(4):589–605; quiz −6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Childs DR, Murthy AS. Overview of wound healing and management. Surg Clin North Am. 2017;97(1):189–207.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Daugherty S, Spear M. Skin and skin substitutes–an overview. Plast Surg Nurs. 2015;35(2):92–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
  23. 23.
    Gardien KL, Marck RE, Bloemen MC, Waaijman T, Gibbs S, Ulrich MM, et al. Outcome of burns treated with autologous cultured proliferating epidermal cells: a prospective randomized multicenter Intrapatient comparative trial. Cell Transplant. 2016;25(3):437–48.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hickerson WL, Remmers AE, Recker D. Twenty-five years’ experience and beyond with Cultured Epidermal Autografts (CEA) for coverage of large burn wounds in adult and pediatric patients, 1989–2015. J Burn Care Res. 2019;40(2):157–65.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sood R, Roggy D, Zieger M, Balledux J, Chaudhari S, Koumanis DJ, et al. Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience. J Burn Care Res. 2010;31(4):559–68.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Falanga V, Sabolinski M. A bilayered living skin construct (APLIGRAF) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen. 1999;7(4):201–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Edmonds M. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds. 2009;8(1):11–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zelen CM, Serena TE, Gould L, Le L, Carter MJ, Keller J, et al. Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost. Int Wound J. 2016;13(2):272–82.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marston WA, Hanft J, Norwood P, Pollak R. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gentzkow GD, Iwasaki SD, Hershon KS, Mengel M, Prendergast JJ, Ricotta JJ, et al. Use of dermagraft, a cultured human dermis, to treat diabetic foot ulcers. Diabetes Care. 1996;19(4):350–4.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Noordenbos J, Dore C, Hansbrough JF. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil. 1999;20(4):275–81.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kumar RJ, Kimble RM, Boots R, Pegg SP. Treatment of partial-thickness burns: a prospective, randomized trial using Transcyte. ANZ J Surg. 2004;74(8):622–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zelen CM, Gould L, Serena TE, Carter MJ, Keller J, Li WW. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J. 2015;12(6):724–32.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J. 2013;10(5):502–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Serena TE, Carter MJ, Le LT, Sabo MJ, DiMarco DT. A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen. 2014;22(6):688–93.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bianchi C, Cazzell S, Vayser D, Reyzelman AM, Dosluoglu H, Tovmassian G. A multicentre randomised controlled trial evaluating the efficacy of dehydrated human amnion/chorion membrane (EpiFix((R))) allograft for the treatment of venous leg ulcers. Int Wound J. 2018;15(1):114–22.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lavery L, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, et al. Open-label extension phase of a chronic diabetic foot ulcer multicenter, controlled, randomized clinical trial using cryopreserved placental membrane. Wounds. 2018;30(9):283–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, et al. The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J. 2014;11(5):554–60.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    The Oxford 2011 Levels of Evidence: Oxford Centre for Evidence-Based Medicine. Available from: http://www.cebm.net/index.aspx?o=5653.
  40. 40.
    Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng. 2006;12(9):2407–24.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Leary T, Jones PL, Appleby M, Blight A, Parkinson K, Stanley M. Epidermal keratinocyte self-renewal is dependent upon dermal integrity. J Invest Dermatol. 1992;99(4):422–30.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
  43. 43.
    Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70(11):1588–98.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32(4):395–401.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chester DL, Balderson DS, Papini RP. A review of keratinocyte delivery to the wound bed. J Burn Care Rehabil. 2004;25(3):266–75.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma. 1995;39(2):309–19.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Holmes Iv JH, Molnar JA, Carter JE, Hwang J, Cairns BA, King BT, et al. A comparative study of the ReCell(R) device and autologous spit-thickness meshed skin graft in the treatment of acute burn injuries. J Burn Care Res. 2018;39(5):694–702.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, et al. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017;18(4).Google Scholar
  50. 50.
    Duchini G, Itin P, Arnold A. A case of refractory pyoderma gangrenosum treated with a combination of Apligraf and systemic immunosuppressive agents. Adv Skin Wound Care. 2011;24(5):217–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Trent JT, Kirsner RS. Epidermolysis bullosa: identification and treatment. Adv Skin Wound Care. 2003;16(6):284–90.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hayes DW Jr, Webb GE, Mandracchia VJ, John KJ. Full-thickness burn of the foot: successful treatment with Apligraf. A case report. Clin Podiatr Med Surg. 2001;18(1):179–88.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Shealy FG Jr, DeLoach ED. Experience with the use of apligraf to heal complicated surgical and nonsurgical wounds in a private practice setting. Adv Skin Wound Care. 2006;19(6):310–22.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dinh TL, Veves A. The efficacy of Apligraf in the treatment of diabetic foot ulcers. Plast Reconstr Surg. 2006;117(7 Suppl):152S–7S; discussion 8S–9S.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol. 2001;2(5):305–13.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zaulyanov L, Kirsner RS. A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging. 2007;2(1):93–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Schonfeld WH, Villa KF, Fastenau JM, Mazonson PD, Falanga V. An economic assessment of Apligraf (Graftskin) for the treatment of hard-to-heal venous leg ulcers. Wound Repair Regen. 2000;8(4):251–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Harding K, Sumner M, Cardinal M. A prospective, multicentre, randomised controlled study of human fibroblast-derived dermal substitute (Dermagraft) in patients with venous leg ulcers. Int Wound J. 2013;10(2):132–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Purdue GF, Hunt JL, Still JM Jr, Law EJ, Herndon DN, Goldfarb IW, et al. A multicenter clinical trial of a biosynthetic skin replacement, Dermagraft-TC, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil. 1997;18(1 Pt 1):52–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sheikh ES, Sheikh ES, Fetterolf DE. Use of dehydrated human amniotic membrane allografts to promote healing in patients with refractory non healing wounds. Int Wound J. 2014;11(6):711–7.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Miranda EP, Friedman A. Dehydrated human amnion/chorion grafts may accelerate the healing of ulcers on free flaps in patients with venous insufficiency and/or lymphedema. Eplasty. 2016;16:e26.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hughes OB, Rakosi A, Macquhae F, Herskovitz I, Fox JD, Kirsner RS. A review of cellular and acellular matrix products: indications, techniques, and outcomes. Plast Reconstr Surg. 2016;138(3 Suppl):138s–47s.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
  64. 64.
    Epifix Product Overview. Available from: https://mimedx.com/epifix/.
  65. 65.
  66. 66.
    Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg. 2005;41(5):837–43.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care. 2005;18(5 Pt 1):258–66.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Cazzell SM, Lange DL, Dickerson JE Jr, Slade HB. The management of diabetic foot ulcers with porcine small intestine submucosa tri-layer matrix: a randomized controlled trial. Adv Wound Care. 2015;4(12):711–8.CrossRefGoogle Scholar
  69. 69.
    Schulz A, Depner C, Lefering R, Kricheldorff J, Kastner S, Fuchs PC, et al. A prospective clinical trial comparing Biobrane((R)) Dressilk((R)) and PolyMem((R)) dressings on partial-thickness skin graft donor sites. Burns. 2016;42(2):345–55.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Prasad JK, Feller I, Thomson PD. A prospective controlled trial of Biobrane versus scarlet red on skin graft donor areas. J Burn Care Rehabil. 1987;8(5):384–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Feldman DL, Rogers A, Karpinski RH. A prospective trial comparing Biobrane, Duoderm and xeroform for skin graft donor sites. Surg Gynecol Obstet. 1991;173(1):1–5.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Barret JP, Dziewulski P, Ramzy PI, Wolf SE, Desai MH, Herndon DN. Biobrane versus 1% silver sulfadiazine in second-degree pediatric burns. Plast Reconstr Surg. 2000;105(1):62–5.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gerding RL, Emerman CL, Effron D, Lukens T, Imbembo AL, Fratianne RB. Outpatient management of partial-thickness burns: Biobrane versus 1% silver sulfadiazine. Ann Emerg Med. 1990;19(2):121–4.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Driver VR, Lavery LA, Reyzelman AM, Dutra TG, Dove CR, Kotsis SV, et al. A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound Repair Regen. 2015;23(6):891–900.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Campitiello F, Mancone M, Della Corte A, Guerniero R, Canonico S. To evaluate the efficacy of an acellular Flowable matrix in comparison with a wet dressing for the treatment of patients with diabetic foot ulcers: a randomized clinical trial. Updat Surg. 2017;69(4):523–9.CrossRefGoogle Scholar
  76. 76.
    Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21(4):243–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sinha UK, Shih C, Chang K, Rice DH. Use of AlloDerm for coverage of radial forearm free flap donor site. Laryngoscope. 2002;112(2):230–4.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sinha UK, Chang KE, Shih CW. Reconstruction of pharyngeal defects using AlloDerm and sternocleidomastoid muscle flap. Laryngoscope. 2001;111(11 Pt 1):1910–6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kellner DS, Fracchia JA, Voigt E, Armenakas NA. Preliminary report on use of AlloDerm for closure of intraoral defects after buccal mucosal harvest. Urology. 2007;69(2):372–4.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Pushpoth S, Tambe K, Sandramouli S. The use of AlloDerm in the reconstruction of full-thickness eyelid defects. Orbit. 2008;27(5):337–40.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Deneve JL, Turaga KK, Marzban SS, Puleo CA, Sarnaik AA, Gonzalez RJ, et al. Single-institution outcome experience using AlloDerm(R) as temporary coverage or definitive reconstruction for cutaneous and soft tissue malignancy defects. Am Surg. 2013;79(5):476–82.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Park JY, Lee TG, Kim JY, Lee MC, Chung YK, Lee WJ. Acellular dermal matrix to treat full thickness skin defects: follow-up subjective and objective skin quality assessments. Arch Craniofac Surg. 2014;15(1):14–21.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bolton WD, Ben-Or S, Hale AL, Stephenson JE. Reconstruction of a long-segment tracheal defect using an AlloDerm conduit. Innovations. 2017;12(2):137–9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Romanelli M, Dini V, Bertone MS. Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care. 2010;23(1):34–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Romanelli M, Dini V, Bertone M, Barbanera S, Brilli C. OASIS wound matrix versus Hyaloskin in the treatment of difficult-to-heal wounds of mixed arterial/venous aetiology. Int Wound J. 2007;4(1):3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lev-Tov H, Li CS, Dahle S, Isseroff RR. Cellular versus acellular matrix devices in treatment of diabetic foot ulcers: study protocol for a comparative efficacy randomized controlled trial. Trials. 2013;14:8.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Oasis Wound Types. Available from: https://www.oasiswoundmatrix.com/wound-type.
  88. 88.
    Lal S, Barrow RE, Wolf SE, Chinkes DL, Hart DW, Heggers JP, et al. Biobrane improves wound healing in burned children without increased risk of infection. Shock. 2000;14(3):314–8; discussion 8–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Cassidy C, St Peter SD, Lacey S, Beery M, Ward-Smith P, Sharp RJ, et al. Biobrane versus duoderm for the treatment of intermediate thickness burns in children: a prospective, randomized trial. Burns. 2005;31(7):890–3.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wood F, Martin L, Lewis D, Rawlins J, McWilliams T, Burrows S, et al. A prospective randomised clinical pilot study to compare the effectiveness of Biobrane(R) synthetic wound dressing, with or without autologous cell suspension, to the local standard treatment regimen in paediatric scald injuries. Burns. 2012;38(6):830–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Oasis Application. Available from: https://www.oasiswoundmatrix.com/application.
  92. 92.
    Biobrane Application. Available from: https://www.woundsource.com/product/biobrane.
  93. 93.
    Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, et al. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24(1):42–8.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Jeschke MG, Rose C, Angele P, Fuchtmeier B, Nerlich MN, Bolder U. Development of new reconstructive techniques: use of Integra in combination with fibrin glue and negative-pressure therapy for reconstruction of acute and chronic wounds. Plast Reconstr Surg. 2004;113(2):525–30.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Branski LK, Herndon DN, Pereira C, Mlcak RP, Celis MM, Lee JO, et al. Longitudinal assessment of Integra in primary burn management: a randomized pediatric clinical trial. Crit Care Med. 2007;35(11):2615–23.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Campitiello F, Della Corte A, Guerniero R, Pellino G, Canonico S. Efficacy of a new Flowable wound matrix in tunneled and cavity ulcers: a preliminary report. Wounds. 2015;27(6):152–7.PubMedPubMedCentralGoogle Scholar
  97. 97.
  98. 98.
  99. 99.
    Sclafani AP, Romo T 3rd, Jacono AA, McCormick S, Cocker R, Parker A. Evaluation of acellular dermal graft in sheet (AlloDerm) and injectable (micronized AlloDerm) forms for soft tissue augmentation. Clinical observations and histological analysis. Arch Facial Plast Surg. 2000;2(2):130–6.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Bochicchio GV, De Castro GP, Bochicchio KM, Weeks J, Rodriguez E, Scalea TM. Comparison study of acellular dermal matrices in complicated hernia surgery. J Am Coll Surg. 2013;217(4):606–13.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Cazzell S, Vayser D, Pham H, Walters J, Reyzelman A, Samsell B, et al. A randomized clinical trial of a human acellular dermal matrix demonstrated superior healing rates for chronic diabetic foot ulcers over conventional care and an active acellular dermal matrix comparator. Wound Repair Regen. 2017;25(3):483–97.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hinchcliff KM, Orbay H, Busse BK, Charvet H, Kaur M, Sahar DE. Comparison of two cadaveric acellular dermal matrices for immediate breast reconstruction: a prospective randomized trial. J Plast Reconstr Aesthet Surg. 2017;70(5):568–76.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Banta MN, Eaglstein WH, Kirsner RS. Healing of refractory sinus tracts by dermal matrix injection with Cymetra. Dermatol Surg. 2003;29(8):863–6.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Dorweiler B, Trinh TT, Dunschede F, Vahl CF, Debus ES, Storck M, et al. The marine Omega3 wound matrix for treatment of complicated wounds: a multicenter experience report. Gefasschirurgie. 2018;23(Suppl 2):46–55.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Gravante G, Sorge R, Merone A, Tamisani AM, Di Lonardo A, Scalise A, et al. Hyalomatrix PA in burn care practice: results from a national retrospective survey, 2005 to 2006. Ann Plast Surg. 2010;64(1):69–79.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Albert Einstein College of MedicineBronxUSA
  2. 2.Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations