Laser Scanning in Maxillofacial Surgery

  • Britt-Isabelle BergEmail author
  • Cornelia Kober
  • Katja Schwenzer-Zimmerer


Capturing three-dimensional (3D) imaging is essential in the broad field of cranio-maxillofacial surgery. Laser scanners and stereophotogrammetry are more and more relevant for capturing (facial) soft tissues. For this purpose, a 3D laser scanning imaging system, using a nonhazardous laser, with a precise texture reproduction and in some models with colour capturing, can replace 3D imaging with radiation in many cases. This chapter gives an overview on the different applications of laser scanning in maxillofacial surgery. The following topics will be pointed out: the method of laser scanning; the laser scanning of plaster models, impressions and skull models; the laser scanning for oral surgical planning and for the assessment of facial swelling after oral surgery; the laser scanning of malformations; the laser scanning in facial aesthetics and epithetic procedures; and the laser scanning in orthodontic treatment and orthognathic surgery. 3D laser scanners are still commonly used, but recently other devices, often based on stereophotogrammetry or 3D camera systems, became often superior. Due to shorter acquisition times, these systems are less vulnerable to motion artefacts and, thereby, more suitable for capturing small children or less cooperative patients.


Laser scanning Stereophotogrammetry Photogrammetry 3D imaging Facial aesthetics Epithetic procedures Oral surgery Malformations Orthodontic treatment Orthognathic surgery 


  1. 1.
    Codari M, Pucciarelli V, Pisoni L, Sforza C. Laser scanner compared with stereophotogrammetry for measurements of area on nasal plaster casts. Br J Oral Maxillofac Surg. 2015;53(8):769–70. Scholar
  2. 2.
    Claus EB, Calvocoressi L, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M. Dental x-rays and risk of meningioma. Cancer. 2012;118(18):4530–7. Scholar
  3. 3.
    Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505. Scholar
  4. 4.
    Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. Scholar
  5. 5. Accessed 4 Feb 2018.
  6. 6.
    Kusnoto B, Evans CA. Reliability of a 3D surface laser scanner for orthodontic applications. Am J Orthod Dentofac Orthop. 2002;122:342–8.CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
    Schwenzer-Zimmerer K, Boerner BI, Schwenzer NF, Müller AA, Juergens P, Ringenbach A, Schkommodau E, Zeilhofer HF. Facial acquisition by dynamic optical tracked laser imaging: a new approach. J Plast Reconstr Aesthet Surg. 2009;62(9):1181–6. Scholar
  10. 10.
    Brun B. Robotergestützte Digitalisierung in der Kiefer- und Gesichtschirurgie; Diplomarbeit, Autumn semester 2007. Switzerland: HSR Hochschule für Technik, Rapperswil; 2007.Google Scholar
  11. 11.
    Harrison JA, Nixon MA, Fright WR, Snape L. Use of hand-held laser scanning in the assessment of facial swelling: a preliminary study. Br J Oral Maxillofac Surg. 2004;42(1):8–17.CrossRefGoogle Scholar
  12. 12.
    Miller L, Morris DO, Berry E. Visualizing three-dimensional facial soft tissue changes following orthognathic surgery. Eur J Orthod. 2007;29(1):14–20.CrossRefGoogle Scholar
  13. 13.
    Sidequersky FV, Verzé L, Mapelli A, Ramieri GA, Sforza C. Quantification of facial movements by optical instruments: surface laser scanning and optoelectronic three-dimensional motion analyzer. J Craniofac Surg. 2014;25(1):e65–70. Scholar
  14. 14.
    Verzé L, Bianchi FA, Dell’Acqua A, Prini V, Ramieri GA. Facial mobility after bimaxillary surgery in class III patients: a three-dimensional study. J Craniofac Surg. 2011;22(6):2304–7. Scholar
  15. 15.
    Verzé L, Nasi A, Quaranta F, Vasino V, Prini V, Ramieri G. Quantification of facial movements by surface laser scanning. J Craniofac Surg. 2011;22(1):60–5. Scholar
  16. 16.
    Ferrario VF, Mian F, Peretta R, Rosati R, Sforza C. Three-dimensional computerized anthropometry of the nose: landmark representation compared to surface analysis. Cleft Palate Craniofac J. 2007;44(3):278–85.CrossRefGoogle Scholar
  17. 17.
    Holberg C, Schwenzer K, Mahaini L, Rudzki-Janson I. Accuracy of facial plaster casts. Angle Orthod. 2006;76(4):605–11.PubMedGoogle Scholar
  18. 18.
    Jung YR, Park JM, Chun YS, Lee KN, Kim M. Accuracy of four different digital intraoral scanners: effects of the presence of orthodontic brackets and wire. Int J Comput Dent. 2016;19(3):203–15.PubMedGoogle Scholar
  19. 19.
    Flügge TV, Att W, Metzger MC, Nelson K. Precision of dental implant digitization using intraoral scanners. Int J Prosthodont. 2016;29(3):277–83. Scholar
  20. 20.
    Lee CY, Wong N, Ganz SD, Mursic J, Suzuki JB. Use of an intraoral laser scanner during the prosthetic phase of implant dentistry: a pilot study. J Oral Implantol. 2015;41(4):e126–32. Scholar
  21. 21.
    San José V, Bellot-Arcís C, Tarazona B, Zamora NO, Lagravère M, Paredes-Gallardo V. Dental measurements and Bolton index reliability and accuracy obtained from 2D digital, 3D segmented CBCT, and 3d intraoral laser scanner. J Clin Exp Dent. 2017;9(12):e1466–73. eCollection 2017 Dec.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Schultze-Mosgau S, Schmelzeisen R, Frölich JC, Schmele H. Use of ibuprofen and methylprednisolone for the prevention of pain and swelling after removal of impacted third molars. J Oral Maxillofac Surg. 1995;53(1):2–7; discussion 7-8CrossRefGoogle Scholar
  23. 23.
    Rana M, Gellrich NC, Ghassemi A, Gerressen M, Riediger D, Modabber A. Three-dimensional evaluation of postoperative swelling after third molar surgery using 2 different cooling therapy methods: a randomized observer-blind prospective study. J Oral Maxillofac Surg. 2011;69(8):2092–8. Scholar
  24. 24.
    Schwenzer-Zimmerer K, Chaitidis D, Berg-Boerner I, Krol Z, Kovacs L, Schwenzer NF, Zimmerer S, Holberg C, Zeilhofer HF. Quantitative 3D soft tissue analysis of symmetry prior to and after unilateral cleft lip repair compared with non-cleft persons (performed in Cambodia). J Craniomaxillofac Surg. 2008;36(8):431–8. Scholar
  25. 25.
    Farkas LG, Hajnis K, Posnick JC. Anthropometric and anthroposcopic findings of the nasal and facial region in cleft patients before and after primary lip and palate repair. Cleft Palate Craniofac J. 1993;30:1e12.CrossRefGoogle Scholar
  26. 26.
    Schwenzer-Zimmerer K, Chaitidis D, Boerner BI, Kovacs L, Sader R, Zeilhofer HF, Holberg C. Lip, jaw, and palate clefts: Analysis of unilateral cleft lip using 3-D laser topometry. Mund Kiefer Gesichtschir. 2006;10(6):377–84.Google Scholar
  27. 27.
    Mori A, Nakajima T, Kaneko T, Sakuma H, Aoki Y. Analysis of 109 Japanese children’s lip and nose shapes using 3-dimensional digitizer. Br J Plast Surg. 2005;58:318–29.CrossRefGoogle Scholar
  28. 28.
    Kovacs L, Zimmermann A, Brockmann G, Gühring M, Baurecht H, Papadopulos NA, Schwenzer-Zimmerer K, Sader R, Biemer E, Zeilhofer HF. Three-dimensional recording of the human face with a 3D laser scanner. J Plast Reconstr Aesthet Surg. 2006;59(11):1193–202.CrossRefGoogle Scholar
  29. 29.
    Kishi N, Tanaka S, Iida S, Kogo M. Comprehensive evaluation of three-dimensional philtral morphology. J Craniofac Surg. 2011;22(5):1606–11. Scholar
  30. 30.
    Uemura T. A study of the figures of Japanese philtrum by measurement. J Jpn PRS. 1993;13:55Y67.Google Scholar
  31. 31.
    Largo RD, Wettstein R, Fulco I, Tremp M, Schaefer DJ, Gubisch W, Haug MD. Three-dimensional laser surface scanning in rhinosurgery. Facial Plast Surg. 2013;29(2):116–20. Scholar
  32. 32.
    Wettstein R, Kalbermatten DF, Rieger UM, Schumacher R, Dagorov P, Pierer G. Laser surface scanning analysis in reconstructive rhytidectomy. Aesthet Plast Surg. 2006;30(6):637–40.CrossRefGoogle Scholar
  33. 33.
    Lee HH, Kim ST, Lee KJ, Baik HS. Effect of a second injection of botulinum toxin on lower facial contouring, as evaluated using 3-dimensional laser scanning. Dermatol Surg. 2015;41(4):439–44. Scholar
  34. 34.
    Ong J, Clarke A, White P, Johnson MA, Withey S, Butler PE. Objective evidence for the use of polylactic acid implants in HIV-associated facial lipoatrophy using three-dimensional surface laser scanning and psychological assessment. J Plast Reconstr Aesthet Surg. 2009;62(12):1627–35. Scholar
  35. 35.
    Coward TJ, Scott BJ, Watson RM, Richards R. Identifying the position of an ear from a laser scan: the significance for planning rehabilitation. Int J Oral Maxillofac Surg. 2002;31(3):244–51.CrossRefGoogle Scholar
  36. 36.
    Coward TJ, Watson RM, Scott BJ. Laser scanning for the identification of repeatable landmarks of the ears and face. Br J Plast Surg. 1997;50(5):308–14.CrossRefGoogle Scholar
  37. 37.
    Ciocca L, Scotti R. CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent. 2004;92:591–5.CrossRefGoogle Scholar
  38. 38.
    Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM bilateral ear prostheses construction for Treacher Collins syndrome patients using laser scanning and rapid prototyping. Comput Methods Biomech Biomed Engin. 2010;13(3):379–86. Scholar
  39. 39.
    Ciocca L, Mingucci R, Gassino G, Scotti R. CAD/CAM ear model and virtual construction of the mold. J Prosthet Dent. 2007;98(5):339–43.CrossRefGoogle Scholar
  40. 40.
    Mueller AA, Paysan P, Schumacher R, Zeilhofer HF, Berg-Boerner BI, Maurer J, Vetter T, Schkommodau E, Juergens P, Schwenzer-Zimmerer K. Missing facial parts computed by a morphable model and transferred directly to a polyamide laser-sintered prosthesis: an innovation study. Br J Oral Maxillofac Surg. 2011;49(8):e67–71. Scholar
  41. 41.
    Ciocca L, Tarsitano A, Marchetti C, Scotti R. Updates on the construction of an eyeglass-supported nasal prosthesis using computer-aided design and rapid prototyping technology. J Prosthodont. 2016;25(1):61–5. Scholar
  42. 42.
    Jivănescu A, Bratu DC, Tomescu L, Măroiu AC, Popa G, Bratu EA. The assessment of lower face morphology changes in edentulous patients after prosthodontic rehabilitation, using two methods of measurement. Romanian J Morphol Embryol. 2015;56(2 Suppl):753–7.Google Scholar
  43. 43.
    Gäbel H, Kakoshke D. Photogrammetric quantification of changes of soft tissue after skeletal treatment of the facial part of the skull. In: Kraus K, Waldhäusl P, editors. IAPRS. Technical Commission V: close range techniques and machine vision. Vol. 31, Part B5. Horn: Druckerei Berger; 1996. p. 188–93.Google Scholar
  44. 44.
    Ayoub AF, Siebert P, Moos KF, Wray D, Urquhart C, Niblett TB. A vision-based three- dimensional capture system for maxillofacial assessment and surgical planning. Br J Oral Maxillofac Surg. 1998;36(5):353–7.CrossRefGoogle Scholar
  45. 45.
    Baik HS, Jeon JM, Lee HJ. Facial soft-tissue analysis of Korean adults with normal occlusion using a 3-dimensional laser scanner. Am J Orthod Dentofac Orthop. 2007;131(6):759–66.CrossRefGoogle Scholar
  46. 46.
    Baik HS, Kim SY. Facial soft-tissue changes in skeletal Class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am J Orthod Dentofac Orthop. 2010;138(2):167–78. Scholar
  47. 47.
    Kulczynski FZ, Andriola FO, Deon PH, Melo DADS, Pagnoncelli RM. Postural assessment in class III patients before orthognathic surgery. J Oral Maxillofac Surg. 2018;76(2):426–35. Scholar
  48. 48.
    Masoud MI, Bansal NC, Castillo J, Manosudprasit A, Allareddy V, Haghi A, Hawkins HC, Otárola-Castillo E. 3D dentofacial photogrammetry reference values: a novel approach to orthodontic diagnosis. Eur J Orthod. 2017;39(2):215–25. Scholar
  49. 49.
    Manosudprasit A, Haghi A, Allareddy V, Masoud MI. Diagnosis and treatment planning of orthodontic patients with 3-dimensional dentofacial records. Am J Orthod Dentofac Orthop. 2017;151(6):1083–91. Scholar
  50. 50.
    Freudlsperger C, Rückschloß T, Ristow O, Bodem J, Kargus S, Seeberger R, Engel M, Hoffmann J, Mertens C. Effect of occlusal plane correction on lip cant in two-jaw orthognathic surgery—a three-dimensional analysis. J Craniomaxillofac Surg. 2017;45(6):1026–30. Scholar
  51. 51.
    Seo SW, Jung YS, Baik HS. Three-dimensional analysis of midfacial soft tissue changes after maxillary posterior impaction and intraoral vertical ramus osteotomy for mandibular setback in class III patients. J Craniofac Surg. 2017;28(7):1789–96. Scholar
  52. 52.
    Lin CW, Wang YC, Chen YH, Ko EW. Dentoskeletal parameters related to visual perception of facial asymmetry in patients with skeletal class III malocclusion after orthognathic surgery. Int J Oral Maxillofac Surg. 2018;47(1):48–56. Scholar
  53. 53.
    Kim JH, Park YC, Yu HS, Kim MK, Kang SH, Choi YJ. Accuracy of 3-dimensional virtual surgical simulation combined with digital teeth alignment: a pilot study. J Oral Maxillofac Surg. 2017;75(11):2441.e1–2441.e13. Scholar
  54. 54.
    Song HS, Choi SH, Cha JY, Lee KJ, Yu HS. Comparison of changes in the transverse dental axis between patients with skeletal Class III malocclusion and facial asymmetry treated by orthognathic surgery with and without presurgical orthodontic treatment. Korean J Orthod. 2017;47(4):256–67. Scholar
  55. 55.
    James RD. A comparative study of facial profiles in extraction and non-extraction treatment. Am J Orthodont Dentofac Orthop. 1998;114:265–76.CrossRefGoogle Scholar
  56. 56.
    Boley JC, Pontier JP, Smith S, Fulbright M. Facial changes in extraction and non-extraction patients. Angle Orthod. 1998;68:539–46.PubMedGoogle Scholar
  57. 57.
    Moss JP, Ismail SF, Hennessy RJ. Three-dimensional assessment of treatment outcomes on the face. Orthod Craniofacial Res. 2003;6(Suppl 1):126–31; discussion 179-82CrossRefGoogle Scholar
  58. 58.
    Noguchi N, Tsuji M, Shigematsu M, Goto M. An orthognathic simulation system integrating teeth, jaw and face data using 3D cephalometry. Int J Oral Maxillofac Surg. 2007;36(7):640–5.CrossRefGoogle Scholar
  59. 59.
    Yamada T, Mishima K, Moritani N, Janune D, Matsumura T, Ikeya Y, Yamamoto T. Nasolabial morphologic changes after a Le Fort I osteotomy: a three-dimensional anthropometric study. J Craniofac Surg. 2010;21(4):1089–95. Scholar
  60. 60.
    Soncul M, Bamber MA. Evaluation of facial soft tissue changes with optical surface scan after surgical correction of Class III deformities. J Oral Maxillofac Surg. 2004;62(11):1331–40.CrossRefGoogle Scholar
  61. 61.
    Gerbino G, Bianchi FA, Verzé L, Ramieri G. Soft tissue changes after maxillo-mandibular advancement in OSAS patients: a three-dimensional study. J Craniomaxillofac Surg. 2014;42(1):66–72. Scholar
  62. 62.
    Aurora RN, Casey KR, Kristo D, Auerbach S, Bista SR, Chowdhuri S, Karippot A, Lamm C, Ramar K, Zak R, Morgenthaler TI, American Academy of Sleep Medicine. Practice parameters for the surgical modifications of the upper airway for obstructive sleep apnea in adults. Sleep. 2010;33(10):1408–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Britt-Isabelle Berg
    • 1
    Email author
  • Cornelia Kober
    • 2
  • Katja Schwenzer-Zimmerer
    • 3
  1. 1.Department of Cranio-Maxillofacial SurgeryUniversity Hospital BaselBaselSwitzerland
  2. 2.HAW HamburgHamburgGermany
  3. 3.Department of Oral and Maxillofacial SurgeryUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations