Advertisement

Additive Manufacturing and 3D Printing

  • Jan-Michaél Hirsch
  • Anders Palmquist
  • Lars-Erik RännarEmail author
  • Florian M. Thieringer
Chapter
  • 45 Downloads

Abstract

This chapter discusses recent applications and findings in additive manufacturing (AM), or 3D printing, applied in oral and maxillofacial surgery. The reader will get an introduction to the basics of AM technology followed by oral and maxillofacial applications like printing of anatomical models and the design and manufacturing of customised implants. Recent research on the biological response of some AM metal alloys is also discussed at the end of the chapter.

Keywords

Additive manufacturing 3D modelling Anatomical models Biological response 

References

  1. 1.
    Hull CW. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330A, 11 March 1986.Google Scholar
  2. 2.
    Ciraud P. Verfahren und Vorrichtung zur Herstellung beliebiger Gegenstände aus beliebigem schmelzbaren Material. German Patent 2263777, 5 July 1973.Google Scholar
  3. 3.
    Zweifel DF, Simon C, Hoarau R, Pascher P, Broome M. Are virtual planning and guided surgery for head and neck reconstruction economically viable? J Oral Maxillofac Surg. 2015;73(1):170–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Petzold R, Zeilhofer H-F, Kalender WA. Rapid prototyping technology in medicine—basics and applications. Comput Med Imag Graph. 1999;23(5):277–84.CrossRefGoogle Scholar
  5. 5.
    Thieringer FM, Sharma N, Mootien A, Schumacher R, Honigmann P. Patient specific implants from a 3D printer—an innovative manufacturing process for custom PEEK implants in cranio-maxillofacial surgery. In: Meboldt M, Klahn C, editors. Industrializing additive manufacturing—proceedings of additive manufacturing in products and applications—AMPA2017. AMPA 2017. Cham: Springer; 2018. p. 308–15.CrossRefGoogle Scholar
  6. 6.
    Sander G, Kärcher H, Gaggl A, Kern R. Stereolithography versus milled three-dimensional models: comparison of production method, indication, and accuracy. Comput Aided Surg. 1998;3(5):248–56.CrossRefGoogle Scholar
  7. 7.
    Sykes LM, Parrott AM, Owen CP, Snaddon DR. Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont. 2004;17(4):456–9.Google Scholar
  8. 8.
    López-Arcas JM, Arias J, Del Castillo JL, Burgueño M, Navarro I, Morán MJ, Chamorro M, Martorell V. The fibula osteomyocutaneous flap for mandible reconstruction: a 15-year experience. J Oral Maxillofac Surg. 2010;68(10):2377–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Król Z, Chlebiej M, Zerfass P, Sader R, Zeilhofer HF, Mikołajczak P, Keeve E. Surgery planning tools for the osseous grafting treatment. Biomed Tech (Berl). 2002;47(Suppl 1 Pt 1):97–100.CrossRefGoogle Scholar
  10. 10.
    Levine JP, Patel A, Saadeh PB, Hirsch DL. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art. J Craniofac Surg. 2012;23(1):288–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Herklotz I, Beuer F, Kunz A, Hildebrand D, Happe A. Navigation in implantology. Int J Comput Dent. 2017;20(1):9–19.PubMedGoogle Scholar
  12. 12.
    Msallem B, Beiglboeck F, Honigmann P, Jaquiéry C, Thieringer F. Craniofacial reconstruction by a cost-efficient template-based process using 3D printing. Plast Reconstr Surg Glob Open. 2017;5(11):e1582.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tarsitano A, Ciocca L, Cipriani R, Scotti R, Marchetti C. Mandibular reconstruction using fibula free flap harvested using a customised cutting guide: how we do it. Acta Otorhinolaryngol Ital. 2015;35(3):198–201.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM. A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg. 2009;38(2):187–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Dérand P, Rännar LE, Hirsch JM. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery. Craniomaxillofac Trauma Reconstr. 2012;5(3):137–44.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Thor A, Palmquist A, Hirsch JM, Rännar LE, Dérand P, Omar O. Clinical, morphological, and molecular evaluations of bone regeneration with an additive manufactured osteosynthesis plate. J Craniofac Surg. 2016;27(7):1899–904.PubMedCrossRefGoogle Scholar
  17. 17.
    Huo J, Dérand P, Rännar LE, Hirsch JM, Gamstedt EK. Failure location prediction by finite element analysis for an additive manufactured mandible implant. Med Eng Phys. 2015;37(9):862–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Engstrand T, Kihlström L, Neovius E, Skogh AC, Lundgren TK, Jacobsson H, Bohlin J, Åberg J, Engqvist H. Development of a bioactive implant for repair and potential healing of cranial defects. J Neurosurg. 2014;120(1):273–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Farré-Guasch E, Wolff J, Helder MN, Schulten AJM, Forouzanfar T, Klein-Nulend J. Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2015;73(12):2408–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, El Batti S. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery. 2016;159(6):1485–500.PubMedCrossRefGoogle Scholar
  21. 21.
    Nyström I, Olsson P, Nysjö J, Nysjö F, Malmberg F, Seipel S, Hirsch JM, Carlbom IB. Virtual cranio-maxillofacial surgery planning with stereo graphics and haptics. In: Ritacco LE, Milano EF, Chao E, editors. Computer-assisted musculoskeletal surgery. Thinking and executing in 3D. AG Switzerland: Springer International Publishing; 2016. p. 29–42.CrossRefGoogle Scholar
  22. 22.
    Nysjö F, Olsson P, Filip Malmberg F, Ingrid B, Carlbom IB. Nyström I. Using anti-aliased signed distance fields for generating surgical guides and plates from CT images. J WSCG. 2017;25(1):11–20.Google Scholar
  23. 23.
    Olsson P, Nysjö F, Rodríguez-Lorenzo A, Thor A, Hirsch JM, Carlbom IB. Novel virtual planning of bone, soft-tissue, and vessels in fibula osteocutaneous free flaps with the haptics-assisted surgery planning (HASP) system. Plast Reconstruct Surg Global Open. 2015;3:e479.CrossRefGoogle Scholar
  24. 24.
    Jardini AL, Larosa MA, Macedo MF, Bernardes LF, Lambert CS, Zavaglia CAC, Filho RM, Calderoni DR, Ghizoni E, Kharmandayan P. Improvement in cranioplasty: advanced prosthesis biomanufacturing. Procedia CIRP. 2016;49(Supplement C):203–8.CrossRefGoogle Scholar
  25. 25.
    Suska F, Kjeller G, Tarnow P, Hryha E, Nyborg L, Snis A, Palmquist A. Electron beam melting manufacturing technology for individually manufactured jaw prosthesis: a case report. J Oral Maxillofac Surg. 2016;74(8):1706 e1701–1706 e1715.CrossRefGoogle Scholar
  26. 26.
    Regis M, Marin E, Fedrizzi L, Pressacco M. Additive manufacturing of trabecular titanium orthopedic implants. MRS Bull. 2015;40(2):137–44.CrossRefGoogle Scholar
  27. 27.
    Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.PubMedGoogle Scholar
  28. 28.
    Thomsen P, Malmstrom J, Emanuelsson L, Rene M, Snis A. Electron beam-melted, free-form-fabricated titanium alloy implants: material surface characterization and early bone response in rabbits. J Biomed Mater Res B Appl Biomater. 2009;90(1):35–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Ponader S, von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Korner C, Singer RF, Nkenke E, Neukam FW, Schlegel KA. In vivo performance of selective electron beam-melted Ti-6Al-4V structures. J Biomed Mater Res A. 2010;92(1):56–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Palmquist A, Snis A, Emanuelsson L, Browne M, Thomsen P. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. J Biomater Appl. 2013;27(8):1003–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L, Norlindh B, Lausmaa J, Thomsen P, Palmquist A. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater. 2016a;36:296–309.PubMedCrossRefGoogle Scholar
  32. 32.
    Shah FA, Snis A, Matic A, Thomsen P, Palmquist A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater. 2016b;30:357–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Palmquist A, Shah FA, Emanuelsson L, Omar O, Suska F. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron. 2017;94:1–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Arabnejad S, Burnett JR, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 2016;30:345–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang B, Song W, Han T, Yan J, Li F, Zhao L, Kou H, Zhang Y. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016;33:311–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016;59:690–701.PubMedCrossRefGoogle Scholar
  37. 37.
    Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM, Martinez E, Shindo PW, Medina F, Wicker RB. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 2011;4(7):1396–411.PubMedCrossRefGoogle Scholar
  38. 38.
    Schouman T, Schmitt M, Adam C, Dubois G, Rouch P. Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep. J Mech Behav Biomed Mater. 2016;59:484–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Xiu P, Jia Z, Lv J, Yin C, Cheng Y, Zhang K, Song C, Leng H, Zheng Y, Cai H, Liu Z. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces. 2016;8(28):17964–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Li X, Feng YF, Wang CT, Li GC, Lei W, Zhang ZY, Wang L. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. PLoS One. 2012;7(12):e52049.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    van der Stok J, Koolen MK, de Maat MP, Yavari SA, Alblas J, Patka P, Verhaar JA, van Lieshout EM, Zadpoor AA, Weinans H, Jahr H. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels. Eur Cell Mater. 2015;29:141–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Tkachenko S, Datskevich O, Kulak L, Jacobson S, Engqvist H, Persson C. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications. J Mech Behav Biomed Mater. 2014;39:61–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Stenlund P, Kurosu S, Koizumi Y, Suska F, Matsumoto H, Chiba A, Palmquist A. Osseointegration enhancement by Zr doping of Co-Cr-Mo implants fabricated by electron beam melting. Addit Manufact. 2015;6:6–15.CrossRefGoogle Scholar
  44. 44.
    Palmquist A, Jarmar T, Hermansson L, Emanuelsson L, Taylor A, Taylor M, Engqvist H, Thomsen P. Calcium aluminate coated and uncoated free form fabricated CoCr implants: a comparative study in rabbit. J Biomed Mater Res B Appl Biomater. 2009;91B(1):122–7.CrossRefGoogle Scholar
  45. 45.
    Grandfield K, Palmquist A, Goncalves S, Taylor A, Taylor M, Emanuelsson L, Thomsen P, Engqvist E. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. J Mater Sci Mater Med. 2011;22(4):899–906.PubMedCrossRefGoogle Scholar
  46. 46.
    Lindahl C, Xia W, Engqvist H, Snis A, Lausmaa J, Palmquist A. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants. Appl Surf Sci. 2015;353(Supplement C):40–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jan-Michaél Hirsch
    • 1
    • 2
  • Anders Palmquist
    • 3
  • Lars-Erik Rännar
    • 4
    Email author
  • Florian M. Thieringer
    • 5
    • 6
  1. 1.Department of Surgical Sciences, Oral and Maxillofacial Surgery, Medical FacultyUppsala UniversityUppsalaSweden
  2. 2.Department of Plastic Surgery and Oral and Maxillofacial SurgeryUppsala University HospitalUppsalaSweden
  3. 3.Department of Biomaterials, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
  4. 4.Sports Tech Research CentreMid Sweden UniversityÖstersundSweden
  5. 5.Clinic for Oral and Cranio-Maxillofacial Surgery and 3D Print LabUniversity Hospital BaselBaselSwitzerland
  6. 6.Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, Hightech Research CenterUniversity of BaselAllschwilSwitzerland

Personalised recommendations