Advertisement

An Introduction to Laser

  • Gholamreza ShayeganradEmail author
Chapter
  • 11 Downloads

Abstract

For a better understanding of the special advantages of laser light in oral and maxillofacial surgery, we need to know the principle of generation of laser light and the properties that distinguishes it from conventional light or other energy sources, as well as, how a laser works and the different types of lasers that can be used in medical applications. Light theory branches into the physics of quantum mechanics, which was conceptualized in the twentieth century. Quantum mechanics deals with behavior of nature on the atomic scale or smaller.

This chapter briefly deals with an introduction to laser, properties of laser light, and laser-beam propagation. It begins with a short overview of the theory about the dual nature of light (particle or wave) and discusses the propagation of laser beam, special properties of laser light, and the different types of lasers that are used in medical applications.

Keywords

Laser principle Coherence Gaussian beam optics Laser medicine Laser surgery 

References

  1. 1.
    Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Phys Rev Lett. 2003;91(23):233901.Google Scholar
  2. 2.
    Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon. 2009;1(1):1Google Scholar
  3. 3.
    Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express. 2000;7(2):77.Google Scholar
  4. 4.
    Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4.CrossRefGoogle Scholar
  5. 5.
    Shayeganrad G, Mashhadi L. Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm. Appl Phys B Lasers Opt. 2012;111:189–94.CrossRefGoogle Scholar
  6. 6.
    Shayeganrad G, Huang Y-C, Mashhadi L. Tunable single and multiwavelength continuous-wave c-cut Nd:YVO4 laser. Appl Phys B Lasers Opt. 2012;108:67–72.CrossRefGoogle Scholar
  7. 7.
    Shayeganrad G. Actively Q-switched Nd:YVO4 dual-wavelength stimulated Raman laser at 1178.9 nm and 1199.9 nm. Opt Commun. 2013;292:131–4.CrossRefGoogle Scholar
  8. 8.
    Zapata-Nava OJ, Rodríguez-Montero P, Iturbe-Castillo MD, Treviño-Palacios CG. Grating cavity dual wavelength dye laser. Opt Express. 2011;19:3483–93.CrossRefGoogle Scholar
  9. 9.
    Liu X, Yang X, Lu F, Ng J, Zhou X, Lu C. Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber. Opt Express. 2005;13:142–7.CrossRefGoogle Scholar
  10. 10.
    Guo L, Lan R, Liu H, Yu H, Zhang H, Wang J, Hu D, et al. 1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. Opt Express. 2010;18:9098–106.CrossRefGoogle Scholar
  11. 11.
    Yao B, Tian Y, Li G, Wang Y. InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers. Opt Express. 2010;18:13574–9.CrossRefGoogle Scholar
  12. 12.
    Yoshioka H, Nakamura S, Ogama T, Wada S. Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity. Opt Express. 2010;18:1479–86.CrossRefGoogle Scholar
  13. 13.
    Shayeganrad G, Mashhadi L. Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm. Appl Phys B Lasers Opt. 2012;111:189–94.CrossRefGoogle Scholar
  14. 14.
    Luo CW, Yang YQ, Mak IT, Chang YH, Wu KH, Kobayashi T. A widely tunable dual-wavelength CW Ti:sapphire laser with collinear output. Opt Express. 2008;16:3305.CrossRefGoogle Scholar
  15. 15.
    Qin Z, Qiao Z, Xie G, Yuan P, Ma J, Qian L, Jiang D, Ma F, Tang F, Su L. Femtosecond and dual-wavelength picosecond operations of Nd,La:SrF2 disordered crystal laser. IEEE Photon J. 2017;9:1502007.Google Scholar
  16. 16.
    Li W, Hao Q, Ding J, Zeng H. Continuous-wave multi-wavelength diode-pumped Yb:GYSO laser. J Opt A Pure Appl Opt. 2008;10:095307.CrossRefGoogle Scholar
  17. 17.
    Li CY, Bo Y, Xu JL, Tian CY, Peng QJ, Cui DF, Xu ZY. Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd:YAG laser. Opt Commun. 2011;284:4574–6.CrossRefGoogle Scholar
  18. 18.
    Brenier A. Tunable THz frequency difference from a diode-pumped dual-wavelength Yb3+:KGd(WO4)2 laser with chirped volume Bragg gratings. Laser Phys Lett. 2011;8:20–524.CrossRefGoogle Scholar
  19. 19.
    Xu B, Wang Y, Cheng Y, Lin Z, Xu H, Cai Z, Moncorgé R. Diode-pumped CW laser operation of a c-cut Nd:YAlO3 crystal on low-gain emission lines around 1.1 um. IEEE Photon J. 2015;7:1503407.Google Scholar
  20. 20.
    Shayeganrad G. Tunable single- and dual-wavelength nanosecond Ti:Sapphire laser around 765 nm. Appl Phys B. 2018;124(8):162.Google Scholar
  21. 21.
    Shayeganrad G, Mashhadi L. Efficient analytic model to optimum design laser resonator and optical coupling system of diode-end-pumped solid-state lasers: Influence of gain medium length and pump beam M2 factor. Appl Opt. 2008;47:619–27.CrossRefGoogle Scholar
  22. 22.
    Mao Y, Chang S, Murdock E, Flueraru C. Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner. Opt Lett. 2011;36:1990–2.CrossRefGoogle Scholar
  23. 23.
    Chang S, Mao Y, Flueraru C. Dual-source swept-source optical coherence tomography reconstructed on integrated spectrum. Int J Optics. 2012;2012:565823.CrossRefGoogle Scholar
  24. 24.
    García-Arellano A, Granados-Agustín F, Campos-García M, Cornejo-Rodríguez A. Ronchi test with equivalent wavelength. Appl Opt. 2012;51:3071–80.CrossRefGoogle Scholar
  25. 25.
    Ménoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P. Dual-wavelength laser source for onboard atom interferometry. Opt Lett. 2011;36:4128–30.CrossRefGoogle Scholar
  26. 26.
    Shibata S. Dual-wavelength spectrophotometry. Angew Chem Int Ed Eng. 1976;15:673–9.CrossRefGoogle Scholar
  27. 27.
    Saha A, Ray A, Mukhopadhyay S, Sinha N, Datta PK. Simultaneous multi-wavelength oscillation of Nd laser around 1.3 lm: a potential source for coherent terahertz generation. Opt Express. 2006;29:4721–6.CrossRefGoogle Scholar
  28. 28.
    Maestre H, Torregrosa AJ, Fernández-Pousa CR, Rico ML, Capmany J. Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ −doped aperiodically poled lithium niobate. Opt Lett. 2008;33:1008–10.CrossRefGoogle Scholar
  29. 29.
    Shayeganrad G, Parvin P. DIAL–phoswich hybrid system for remote sensing of radioactive plumes in order to evaluate external dose rate. Prog Nucl Energy. 2008;51:420–33.CrossRefGoogle Scholar
  30. 30.
    Fredriksson KA. DIAL technique for pollution monitoring: improvements and complementary systems. Appl Opt. 1985;19:3297–304.CrossRefGoogle Scholar
  31. 31.
    Shayeganrad G. Single laser-based differential absorption lidar (DIAL) for remote profiling atmospheric oxygen. Opt Lasers Eng. 2018;111:80–5.Google Scholar

Suggested Reading

  1. Part of the materials presented in this chapter can be found in details in numerous quantum theories of light, optics, and laser books, as follows:Google Scholar
  2. Principles of lasers, by Orazio Svelto and David C. Hanna, 5th Edition, 2010, Springer
  3. Optics, by Eugene Hecht, 5th Edition, 2017, Pearson Addison WesleyGoogle Scholar
  4. The Quantum Theory of Light, by Rodney Loudon 3rd Edition, 2003, Oxford University PressGoogle Scholar
  5. Quantum Electronics, by Amnon Yariv, 3rd Edition, 1989, John Wiley & SonsGoogle Scholar
  6. Laser and electro-optics: Fundamentals and engineering, by Christopher C. Davis, 2nd Edition, 2014, Cambridge University Press
  7. Lasers: Fundamentals and applications, by K. Thyagarajan und A. Ghatak, 2nd dition, 2010, Springer
  8. Semiconductor-laser fundamentals: Physics of the Gain materials, by Weng W. Chow, and Stephan W. Koch, 1999, SpringerGoogle Scholar
  9. Laser-tissue interactions: Fundamentals and applications, by Markolf H. Niemz, 3rd enlarged edition, 2007, SpringerGoogle Scholar
  10. An Open Access Encyclopedia for Photonics and Laser Technology (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Optoelectronic Research CentreUniversity of SouthamptonSouthamptonUK

Personalised recommendations