Laser in Bone Surgery

  • Lina M. Beltrán Bernal
  • Hamed Abbasi
  • Azhar ZamEmail author


During the past half-century, laser osteotomy has been studied for a broad range of lasers, which almost covers the entire range of available laser systems in the market, from early unsuccessful experiments with CW lasers to newly developed ultrashort pulse lasers. Although a large variety of laser parameters including wavelength, pulse energy, pulse duration, and repetition rate have been investigated to find an optimum laser system as an alternative osteotomy tool, there is not a universal agreement on a specific type of laser to replace conventional mechanical saws. The only universal agreement is on the speed of cutting (ablation rate) which went to long-pulse Er:YAG and CO2 lasers. Microsecond pulse Er:YAG and CO2 lasers perform osteotomy by inducing efficient photothermal effect to the bone with the help of high absorption peak of water in the bone. However, having a speedy cut is not the only effective parameter to pave the way for transferring lasers to the operating room. Other parameters including cutting with the lowest thermal damage, ability for deep cutting, and compatibility with integrating sensors are among the other determinant parameters. Moreover, being able to be delivered through the fiber optic and as a consequence fit inside the endoscope channel could extend their application from the open surgery to minimally invasive ones. This chapter besides proving the necessary information on the physics behind the laser–bone interaction provides a short review on the history of bone surgery with laser and state-of-the-art studies in this field.


Laser osteotomy Bone cutting Hard bone Er:YAG CO2 Nd:YAG Irrigation Carbonization Ablation efficiency Pulse duration 


  1. 1.
    Lawrence C. The evolution of surgical instruments: An illustrated history from ancient times to the twentieth century. Bull Hist Med. 2007;81(3):661–2.CrossRefGoogle Scholar
  2. 2.
    Eriksson AR, Albrektsson T, Albrektsson B. Heat caused by drilling cortical bone: temperature measured in vivo in patients and animals. Acta Orthop Scand. 1984;55(6):629–31.CrossRefGoogle Scholar
  3. 3.
    Steiner R, Raulin C, Karsai S. Laser and ipl technology in dermatology and aesthetic medicine. Berlin Heidelberg: Springer-Verlag; 2011.Google Scholar
  4. 4.
    Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. 2009;147(2):189–97.CrossRefGoogle Scholar
  5. 5.
    Shapshay SM, Hybels RL, Beamis JF Jr, Bohigian RK. Endoscopic treatment of subglottic and tracheal stenosis by radial laser incision and dilation. Ann Otol Rhinol Laryngol. 1987;96(6):661–4.CrossRefGoogle Scholar
  6. 6.
    Berlien H-P, Breuer H, Müller GJ, Krasner N, Okunata T, Sliney D. Applied laser medicine. New York: Springer Science & Business Media; 2012.Google Scholar
  7. 7.
    Stübinger S. Advances in bone surgery: the Er:Yag laser in oral surgery and implant dentistry. Clin Cosmet Investigat Dentist. 2010;2:47.CrossRefGoogle Scholar
  8. 8.
    Parker S. Surgical lasers and hard dental tissue. Br Dent J. 2007;202(8):445.CrossRefGoogle Scholar
  9. 9.
    Jowett N, Wöllmer W, Reimer R, Zustin J, Schumacher U, Wiseman PW, Mlynarek AM, Böttcher A, Dalchow CV, Lörincz BB, et al. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (pirl). Otolaryngol Head Neck Surg. 2014;150(3):385–93.CrossRefGoogle Scholar
  10. 10.
    Rajitha Gunaratne G, Khan R, Fick D, Robertson B, Dahotre N, Ironside C. A review of the physiological and histological effects of laser osteotomy. J Med Eng Technol. 2017;41(1):1–12.CrossRefGoogle Scholar
  11. 11.
    Maiman T. Stimulated optical radiation in ruby. Nature. 1960;187(4736):493–4.CrossRefGoogle Scholar
  12. 12.
    Rawicz AH. Theodore harold maiman and the invention of laser. Photon Device Syst IV. 2008;7138:713802, International Society for Optics and PhotonicsCrossRefGoogle Scholar
  13. 13.
    Solon LR, Aronson R, Gould G. Physiological implications of laser beams. Science. 1961;134(3489):1506–8.CrossRefGoogle Scholar
  14. 14.
    Goldman L. Effect of the laser beam on the skin, preliminary report. J Invest Derm. 1963;40:121–2.CrossRefGoogle Scholar
  15. 15.
    Zweng H, Flocks M, Kapany N, Silbertrust N, Peppers N. Experimental laser photo-coagulation. Am J Ophthalmol. 1964;58(3):353–62.CrossRefGoogle Scholar
  16. 16.
    Goldman L, Gray JA, Goldman J, Goldman B, Meyer R. Effect of laser beam impacts on teeth. J Am Dent Assoc. 1965;70(3):601–6.CrossRefGoogle Scholar
  17. 17.
    Geusic J, Marcos H, Van Uitert L. Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett. 1964;4(10):182–4.CrossRefGoogle Scholar
  18. 18.
    Patel C. N continuous wave laser action on vibrational-rotational transitions of co2. Phys Rev A. 1964;136:1187.CrossRefGoogle Scholar
  19. 19.
    Horch H, McCord R, Keiditsch E. Histological and long term results following laser osteotomy. In: Laser Surgery II. Jerusalem. Israel: Academic Press; 1978. p. 318.Google Scholar
  20. 20.
    Horch H. Current status of laser osteotomy. Der Orthopade. 1984;13(2):125–32.PubMedGoogle Scholar
  21. 21.
    Clayman L, Fuller T, Beckman H. Healing of continuous-wave and rapid superpulsed, carbon dioxide, laser-induced bone defects. J Oral Surg. 1978;36(12):932–7.PubMedGoogle Scholar
  22. 22.
    Gopin BW, Cobb CM, Rapley JW, Killoy WJ. Histologic evaluation of soft tissue attachment to co 2 laser-treated root surfaces: an in viva study. Int J Periodont Restorat Dentist. 1997;17(4)Google Scholar
  23. 23.
    Eriksson A, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101–7.CrossRefGoogle Scholar
  24. 24.
    Nuss RC, Fabian RL, Sarkar R, Puliafito CA. Infrared laser bone ablation. Lasers Surg Med. 1988;8(4):381–91.CrossRefGoogle Scholar
  25. 25.
    Hibst R, Keller U. Experimental studies of the application of the er: Yag laser on dental hard substances: I. measurement of the ablation rate. Lasers Surg Med. 1989;9(4):338–44.CrossRefGoogle Scholar
  26. 26.
    Keller U, Hibst R. Experimental studies of the application of the er: Yag laser on dental hard substances: Ii. light microscopic and sem investigations. Lasers Surg Med. 1989;9(4):345–51.CrossRefGoogle Scholar
  27. 27.
    Peavy GM, Reinisch L, Payne JT, Venugopalan V. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 μm. Lasers Surg Med. 1999;25(5):421–34.CrossRefGoogle Scholar
  28. 28.
    Hibst R, Keller U. Effects of water spray and repetition rate on the temperature elevation during Er: Yag laser ablation of dentine. Med Applicat Lasers III. 1996;2623:139–45, International Society for Optics and PhotonicsCrossRefGoogle Scholar
  29. 29.
    Convissar RA. The biologic rationale for the use of lasers in dentistry. Dental Clinics. 2004;48(4):771–94.PubMedGoogle Scholar
  30. 30.
    Iaria G. Clinical, morphological, and ultrastructural aspects with the use of Er:Yag and Er, Cr:Ysgg lasers in restorative dentistry. General Dentist. 2008;56(7):636.Google Scholar
  31. 31.
    Jacques SL. Laser-tissue interactions: photochemical, photothermal, and photomechanical. Surg Clin N Am. 1992;72(3):531–58.CrossRefGoogle Scholar
  32. 32.
    Lowery AR, Gobin AM, Day ES, Halas NJ, West JL. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine. 2006;1(2):149.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103(2):577–644.CrossRefGoogle Scholar
  34. 34.
    Matos AB, de Azevedo CS, da Ana PA, Botta SB, Zezell DM. Laser technology for caries removal. In: Contemporary approach to dental caries. London: InTech; 2012.Google Scholar
  35. 35.
    Hibst R, Keller U. Mechanism of Er: Yag laser-induced ablation of dental hard substances. Lasers Orthop Dent Vet Med II. 1993;1880:156–63, International Society for Optics and PhotonicsCrossRefGoogle Scholar
  36. 36.
    Selting WJ. Fundamental erbium laser concepts: Part I. J Laser Dent. 2009;17(2):87–93.Google Scholar
  37. 37.
    Tuchin VV. Tissue optics and photonics: light-tissue interaction II. J Biomed Photon Eng. 2016;2:3.CrossRefGoogle Scholar
  38. 38.
    Stock K, Hibst R, Keller U. Comparison of er: Yag and er: Ysgg laser ablation of dental hard tissues. Med Appl Lasers Dermatol Ophthalmol Dentist Endosc. 1997;3192:88–96, International Society for Optics and PhotonicsGoogle Scholar
  39. 39.
    Spencer P, Payne JM, Cobb CM, Reinisch L, Peavy GM, Drummer DD, Suchman DL, Swafford JR. Effective laser ablation of bone based on the absorption characteristics of water and proteins. J Periodontol. 1999;70(1):68–74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Perhavec T, Diaci J. Comparison of er: Yag and er, cr: Ysgg dental lasers. J Oral Laser Applicat. 2008;8:2.Google Scholar
  41. 41.
    Selting WJ. Fundamental erbium laser concepts: part ii. J Laser Dent. 2010;18(3):116–22.Google Scholar
  42. 42.
    Tulea C-A, Caron J, Gehlich N, Lenenbach A, Noll R, Loosen P. Laser cutting of bone tissue under bulk water with a pulsed ps-laser at 532 nm. J Biomed Opt. 2015;20(10):105007.CrossRefGoogle Scholar
  43. 43.
    Diaci J, Gaspirc B. Comparison of er: Yag and er, cr: Ysgg lasers used in dentistry. J Laser health Acad. 2012;1(1):1–13.Google Scholar
  44. 44.
    Trauner K, Nishioka N, Patel D. Pulsed holmium: yttrium-aluminum-garnet (ho: Yag) laser ablation of fibrocartilage and articular cartilage. Am J Sports Med. 1990;18(3):316–20.CrossRefGoogle Scholar
  45. 45.
    Robertson CW, Williams D. Lambert absorption coefficients of water in the infrared. JOSA. 1971;61(10):1316–20.CrossRefGoogle Scholar
  46. 46.
    Walsh JT Jr, Flotte TJ, Anderson RR, Deutsch TF. Pulsed co2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med. 1988;8(2):108–18.CrossRefGoogle Scholar
  47. 47.
    Walsh JT, Deutsch TF. Pulsed co2 laser tissue ablation: measurement of the ablation rate. Lasers Surg Med. 1988;8(3):264–75.CrossRefGoogle Scholar
  48. 48.
    Walsh JT, Flotte TJ, Deutsch TF. Er: Yag laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med. 1989;9(4):314–26.CrossRefGoogle Scholar
  49. 49.
    Walsh JT. Pulsed laser ablation of tissue: analysis of the removal process and tissue healing. PhD thesis, Massachusetts Institute of Technology, 1988.Google Scholar
  50. 50.
    Visuri SR, Walsh JT, Wigdor HA. Erbium laser ablation of dental hard tissue: effect of water cooling. Lasers Surg Med. 1996;18(3):294–300.CrossRefGoogle Scholar
  51. 51.
    Kuščer L, Diaci J. Measurements of erbium laser-ablation efficiency in hard dental tissues under different water cooling conditions. J Biomed Opt. 2013;18(10):108002.CrossRefGoogle Scholar
  52. 52.
    Abbasi H, Beltrán L, Rauter G, Guzman R, Cattin PC, Zam A. Effect of cooling water on ablation in er: Yag laserosteotome of hard bone. Third Int Conf Applicat Opt Photon. 2017;10453:104531I, International Society for Optics and PhotonicsGoogle Scholar
  53. 53.
    Bernal LMB, Shayeganrad G, Kosa G, Zelechowski M, Rauter G, Friederich N, Cattin PC, Zam A. Performance of er: Yag laser ablation of hard bone under different irrigation water cooling conditions. Opt Interact Tissue Cells XXIX. 2018;10492:104920B, International Society for Optics and PhotonicsGoogle Scholar
  54. 54.
    Stock K, Diebolder R, Hausladen F, Wurm H, Lorenz S, Hibst R. Primary investigations on the potential of a novel diode pumped er: Yag laser system for bone surgery. Photon Therapeut Diagn IX. 2013;8565:85656D, International Society for Optics and PhotonicsCrossRefGoogle Scholar
  55. 55.
    Zhang X, Zhan Z, Liu H, Zhao H, Xie S, Ye Q. Influence of water layer thickness on hard tissue ablation with pulsed co 2 laser. J Biomed Opt. 2012;17(3):038003.CrossRefGoogle Scholar
  56. 56.
    Kang H, Oh J, Welch A. Investigations on laser hard tissue ablation under various environments. Phys Med Biol. 2008;53(12):3381.CrossRefGoogle Scholar
  57. 57.
    Tulea C, Caron J, Wahab H, Gehlich N, Hoefer M, Esser D, Jungbluth B, Lenenbach A, Noll R. Highly efficient nonthermal ablation of bone under bulk water with a frequency- doubled nd: Yvo 4 picosecond laser. Photon Therapeut Diagn IX. 2013;8565:85656E, International Society for Optics and PhotonicsCrossRefGoogle Scholar
  58. 58.
    Lee Y-M, Tu R, Chiang A, Huang Y-C. Average-power mediated ultrafast laser osteotomy using a mode-locked nd: Yvo 4 laser oscillator. J Biomed Opt. 2007;12(6):060505.CrossRefGoogle Scholar
  59. 59.
    Plötz C, Schelle F, Bourauel C, Frentzen M, Meister J. Ablation of porcine bone tissue with an ultrashort pulsed laser (uspl) system. Lasers Med Sci. 2015;30(3):977–83.CrossRefGoogle Scholar
  60. 60.
    Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Laser-induced breakdown spectroscopy as a potential tool for autocarbonization detection in laser osteotomy. J Biomed Opt. 2018;23(7):071206.CrossRefGoogle Scholar
  61. 61.
    Porter JA, Louhisalmi YA, Karjalainen JA, Füger S. Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence. Int J Adv Manuf Technol. 2007;33(9–10):961–7.CrossRefGoogle Scholar
  62. 62.
    Li C-F, Johnson D, Kovacevic R. Modeling of waterjet guided laser grooving of silicon. Int J Mach Tools Manuf. 2003;43(9):925–36.CrossRefGoogle Scholar
  63. 63.
    Schmidt-Uhlig T, Karlitschek P, Marowsky G, Sano Y. New simplified coupling scheme for the delivery of 20 mw nd: Yag laser pulses by large core optical fibers. Appl Phys B Lasers Opt. 2001;72(2):183–6.CrossRefGoogle Scholar
  64. 64.
    Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Plasma plume expansion dynamics in nanosecond nd: Yag laserosteotome. High-Speed Biomed Imag Spectrosc III: Toward Big Data Instrument Manag. 2018;10505:1050513, International Society for Optics and PhotonicsGoogle Scholar
  65. 65.
    Nazeri M, Majd AE, Massudi R, Tavassoli SH, Mesbahinia A, Abbasi H. Laser-induced breakdown spectroscopy via the spatially resolved technique using non-gated detector. J Russ Laser Res. 2016;37(2):164–71.CrossRefGoogle Scholar
  66. 66.
    Hammer DX, Jansen ED, Frenz M, Noojin GD, Thomas RJ, Noack J, Vogel A, Rockwell BA, Welch AJ. Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs. Appl Opt. 1997;36(22):5630–40.CrossRefGoogle Scholar
  67. 67.
    De Giacomo A, DellAglio M, De Pascale O. Single pulse-laser induced breakdown spectroscopy in aqueous solution. Appl Phys A Mater Sci Process. 2004;79(4–6):1035–8.CrossRefGoogle Scholar
  68. 68.
    De Giacomo A, Dell’Aglio M, Colao F, Fantoni R. Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach. Spectrochim Acta B At Spectrosc. 2004;59(9):1431–8.CrossRefGoogle Scholar
  69. 69.
    Verhoff B, Harilal S, Freeman J, Diwakar P, Hassanein A. Dynamics of femto-and nanosecond laser ablation plumes investigated using optical emission spectroscopy. J Appl Phys. 2012;112(9):093303.CrossRefGoogle Scholar
  70. 70.
    Zeng X, Mao X, Greif R, Russo R. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl Phys A Mater Sci Process. 2005;80(2):237–41.CrossRefGoogle Scholar
  71. 71.
    Tsai PS, Blinder P, Migliori BJ, Neev J, Jin Y, Squier JA, Kleinfeld D. Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr Opin Biotechnol. 2009;20(1):90–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Cangueiro L, Vilar R. Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone. Appl Surf Sci. 2013;283:1012–7.CrossRefGoogle Scholar
  73. 73.
    Lo DD, Mackanos MA, Chung MT, Hyun JS, Montoro DT, Grova M, Liu C, Wang J, Palanker D, Connolly AJ, et al. Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone. Lasers Surg Med. 2012;44(10):805–14.CrossRefGoogle Scholar
  74. 74.
    Huang H, Yang L-M, Bai S, Liu J. Smart surgical tool. J Biomed Opt. 2015;20(2):028001.CrossRefGoogle Scholar
  75. 75.
    Gill RK, Smith ZJ, Lee C, Wachsmann-Hogiu S. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and libs study. J Biophotonics. 2016;9(1–2):171–80.CrossRefGoogle Scholar
  76. 76.
    de Menezes RF, Harvey CM, de Martínez Gerbi MEM, Smith ZJ, Smith D, Ivaldi JC, Phillips A, Chan JW, Wachsmann-Hogiu S. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components. J Biophotonics. 2017;10(10):1292–304.CrossRefGoogle Scholar
  77. 77.
    Abbasi H, Rauter G, Guzman R, Cattin PC, Zam A. Differentiation of femur bone from surrounding soft tissue using laser induced breakdown spectroscopy as a feedback system for smart laser osteotomy. Biophoton: Photon Solution Better Health Care VI. 2018;10685:1068519, International Society for Optics and PhotonicsGoogle Scholar
  78. 78.
    Mehari F, Rohde M, Knipfer C, Kanawade R, Klämpfl F, Adler W, Stelzle F, Schmidt M. Laser induced breakdown spectroscopy for bone and cartilage differentiation- ex vivo study as a prospect for a laser surgery feedback mechanism. Biomed Opt Express. 2014;5(11):4013–23.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rohde M, Mehari F, Klämpfl F, Adler W, Neukam F-W, Schmidt M, Stelzle F. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy–a prospect for tissue specific laser surgery. J Biophotonics. 2017;10(10):1250–61.CrossRefGoogle Scholar
  80. 80.
    Kim B-M, Feit M, Rubenchik A, Mammini B, Da Silva L. Optical feedback signal for ultrashort laser pulse ablation of tissue1. Appl Surf Sci. 1998;127:857–62.CrossRefGoogle Scholar
  81. 81.
    Jeong DC, Tsai PS, Kleinfeld D. Prospect for feedback guided surgery with ultra-short pulsed laser light. Curr Opin Neurobiol. 2012;22(1):24–33.CrossRefGoogle Scholar
  82. 82.
    Kenhagho HKN, Rauter G, Guzman R, Cattin PC, Zam A. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system. Adv Biomed Clin Diagn Surg Guid Syst XVI. 2018;10484:104840P, International Society for Optics and PhotonicsGoogle Scholar
  83. 83.
    Beltrán L, Abbasi H, Rauter G, Friederich N, Cattin P, Zam A. Effect of laser pulse duration on ablation efficiency of hard bone in microseconds regime. Third Int Conf Applicat Opt Photon. 2017;10453:104531S, International Society for Optics and PhotonicsGoogle Scholar
  84. 84.
    Strassl M, Wieger V, Brodoceanu D, Beer F, Moritz A, Wintner E. Ultra-short pulse laser ablation of biological hard tissue and biocompatibles, na, 2008.Google Scholar
  85. 85.
    Cangueiro LT, da Silva Vilar RMC, do Rego AMB, Muralha VS. Femtosecond laser ablation of bovine cortical bone. J Biomed Opt. 2012;17(12):125005.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lina M. Beltrán Bernal
    • 1
  • Hamed Abbasi
    • 1
  • Azhar Zam
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of BaselAllschwilSwitzerland

Personalised recommendations