Advertisement

Whole-Body MR Imaging

  • Mary-Louise C. GreerEmail author
Chapter

Abstract

Whole-body magnetic resonance imaging (whole-body MR imaging) has evolved rapidly over the past decade as technical developments have enabled large field of view (FOV) imaging in clinically feasible timeframes, while preserving high contrast and spatial resolution. As a consequence, whole-body MR imaging has become a valuable tool in assessing a range of diffuse, multifocal, and/or multisystem disease processes. This is particularly appealing in the pediatric population given its lack of ionizing radiation, and whole-body MR imaging has emerged as an alternative imaging modality to other large FOV imaging techniques such as computed tomography (CT), positron emission tomography (PET), and radiographic skeletal surveys. In this chapter, whole-body MR imaging techniques are described, detailing standard pulse sequences, imaging planes and anatomic coverage suited to a range of indications, as well as protocols adapted to different pediatric disease entities. The spectrum of pathology discussed includes congenital disorders, specifically cancer predisposition syndromes such as Li-Fraumeni syndrome; other neoplastic disorders encompassing lymphoma, Langerhans cell histiocytosis, and treatment-related complications (e.g., osteonecrosis); infectious and noninfectious inflammatory conditions including fever of unknown origin (FUO); trauma; and postmortem imaging. Whole-body MR imaging can facilitate diagnosis, documents disease burden and treatment response, and guides invasive procedures such as biopsy. Whole-body MR imaging interpretation is also discussed, highlighting tools to optimize disease detection while minimizing pitfalls that can result in false positive or false negative findings.

Keywords

Whole-body Multifocal disease Cancer predisposition syndromes Lymphoma Langerhans cell histiocytosis Osteonecrosis Chronic recurrent multifocal osteomyelitis Enthesitis-related arthritis Polymyositis Juvenile dermatomyositis 

References

  1. 1.
    Greer MC. Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol. 2018;48(9):1348–63.PubMedGoogle Scholar
  2. 2.
    Schooler GR, Davis JT, Daldrup-Link HE, Frush DP. Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol. 2018;48(8):1101–7.PubMedGoogle Scholar
  3. 3.
    Damasio MB, Magnaguagno F, Stagnaro G. Whole-body MRI: non-oncological applications in paediatrics. Radiol Med. 2016;121(5):454–61.PubMedGoogle Scholar
  4. 4.
    Chavhan GB, Babyn PS. Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics. 2011;3(6):1757–72.Google Scholar
  5. 5.
    Pasoglou V, Michoux N, Larbi A, Van Nieuwenhove S, Lecouvet F. Whole body MRI and oncology: recent major advances. Br J Radiol. 2018;91(1090):20170664. ReviewPubMedPubMedCentralGoogle Scholar
  6. 6.
    Davis JT, Kwatra N, Schooler GR. Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging. 2016;44(4):783–93.PubMedGoogle Scholar
  7. 7.
    Greer MC, Voss SD, States LJ. Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res. 2017;23(11):e6–e13.PubMedGoogle Scholar
  8. 8.
    Eutsler EP, Khanna G. Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol. 2016;46(6):858–72.PubMedGoogle Scholar
  9. 9.
    Goo HW. Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol. 2015;16(5):973–85.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Gottumukkala RV, Gee MS, Hampilos PJ, Greer MC. Current and emerging roles of whole-body mri in evaluation of pediatric cancer patients. Radiographics. 2019;39(2):516–34.PubMedGoogle Scholar
  11. 11.
    Teixeira SR, Elias Junior J, Nogueira-Barbosa MH, Guimarães MD, Marchiori E, Santos MK. Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras. 2015;48(2):111–20.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lecouvet FE. Whole-body MR imaging: musculoskeletal applications. Radiology. 2016;279(2):345–65.PubMedGoogle Scholar
  14. 14.
    Mai PL, Khincha PP, Loud JT, DeCastro RM, Bremer RC, Peters JA, et al. Prevalence of cancer at baseline screening in the National Cancer Institute Li-Fraumeni Syndrome Cohort. JAMA Oncol. 2017;3(12):1640–5.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Saya S, Killick E, Thomas S, Taylor N, Bancroft EK, Rothwell J, et al. Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in TP53 mutation carriers and matched controls. Familial Cancer. 2017;16(3):433–40.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Anupindi SA, Bedoya MA, Lindell RB, Rambhatla SJ, Zelley K, Nichols KE, Chauvin NA. Diagnostic performance of whole-body mri as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgeno. 2015;205(2):400–8.Google Scholar
  17. 17.
    Carter AJ, Greer ML, Gray SE, Ware RS. Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol. 2010;40(8):1368–74.PubMedGoogle Scholar
  18. 18.
    Jaimes C, Gee MS. Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol. 2016;46(6):916–27.Google Scholar
  19. 19.
    Perez M, Cuscaden C, Somers JF, Simms N, Shaheed S, Kehoe LA, et al. Easing anxiety in pediatric magnetic resonance imaging: a pilot study using animal assisted therapy. Pediatr Radiol. 2019;49(8):1000–9.PubMedGoogle Scholar
  20. 20.
    Ley S, Ley-Zaporozhan J, Schenk JP. Whole-body MRI in the pediatric patient. Eur J Radiol. 2009;70(3):442–51.PubMedGoogle Scholar
  21. 21.
    Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol. 2016;17(9):1295–305.PubMedGoogle Scholar
  22. 22.
    Nievelstein RA, Littooij AS. Whole-body MRI in paediatric oncology. Radiol Med. 2016;121(5):442–53.PubMedGoogle Scholar
  23. 23.
    Lecouvet FE, Van Nieuwenhove S, Jamar F, Lhommel R, Guermazi A, Pasoglou VP. Whole-body MR imaging: the novel, “intrinsically hybrid,” approach to metastases, myeloma, lymphoma, in bones and beyond. PET Clin. 2018;13(4):505–22.PubMedGoogle Scholar
  24. 24.
    Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, et al. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology. 2015;275(1):155–66.PubMedGoogle Scholar
  25. 25.
    Greer MC. Imaging of cancer predisposition syndromes. Pediatr Radiol. 2018;48(9):1364–75.PubMedGoogle Scholar
  26. 26.
    Chavhan GB, Alsabban Z, Babyn PS. Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. Radiographics. 2014;34(3):E73–88.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Albano D, La Grutta L, Grassedonio E, Patti C, Lagalla R, Midiri M, et al. Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: what radiologists should know. Magn Reson Imaging. 2016;34(7):922–31.PubMedGoogle Scholar
  28. 28.
    Littooij AS, Kwee TC, Barber I, Granata C, de Keizer B, Beek FJ, et al. Accuracy of whole-body MRI in the assessment of splenic involvement in lymphoma. Acta Radiol. 2016;57(2):142–51.PubMedGoogle Scholar
  29. 29.
    Regacini R, Puchnick A, Luisi FAV, Lederman HM. Can diffusion-weighted whole-body MRI replace contrast-enhanced CT for initial staging of Hodgkin lymphoma in children and adolescents? Pediatr Radiol. 2018;48(5):638–47.PubMedGoogle Scholar
  30. 30.
    Leclair N, Thörmer G, Sorge I, Ritter L, Schuster V, Hirsch FW. Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One. 2016;11(1):e0147523.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Andronikou S. Invited lecture 60: MRI in the diagnosis of CNO/CRMO. Pediatr Radiol. 2018;48(Suppl 2):S432.Google Scholar
  32. 32.
    Aquino MR, Tse SM, Gupta S, Rachlis AC, Stimec J. Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatr Radiol. 2015;45(5):754–62.PubMedGoogle Scholar
  33. 33.
    Kratz CP, Achatz MI, Brugières L, Frebourg T, Garber JE, Greer MC, et al. Cancer screening recommendations for individuals with li-Fraumeni syndrome. Clin Cancer Res. 2017;23(11):e38–45.PubMedGoogle Scholar
  34. 34.
    Ballinger ML, Best A, Mai PL, Khincha PP, Loud JT, Peters JA, et al. Baseline surveillance in li-fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol. 2017;3(12):1634–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Arnoldi AP, Schlett CL, Douis H, Geyer LL, Voit AM, Bleisteiner F, et al. Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol. 2017;27(6):2391–9.PubMedGoogle Scholar
  36. 36.
    Koh DM, Blackledge M, Padhani AR, Takahara T, Kwee TC, Leach MO, Collins DJ. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol. 2012;199(2):252–62.PubMedGoogle Scholar
  37. 37.
    Ahlawat S, Fayad LM, Khan MS, Bredella MA, Harris GJ, Evans DG, et al. Whole body MRI committee for the REiNS International Collaboration; REiNS International Collaboration Members 2016. Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology. 2016;87(7 Suppl 1):S31–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Weckbach S, Michaely HJ, Stemmer A, Schoenberg SO, Dinter DJ. Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol. 2010;20(12):2907–16.PubMedGoogle Scholar
  39. 39.
    Klenk C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-Centre study. Lancet Oncol. 2014;15(3):275–85.PubMedGoogle Scholar
  40. 40.
    Muehe AM, Feng D, von Eyben R, Luna-Fineman S, Link MP, Muthig T, et al. Safety report of ferumoxytol for magnetic resonance imaging in children and young adults. Investig Radiol. 2016;51(4):221–7.Google Scholar
  41. 41.
    Ponisio MR, McConathy J, Laforest R, Khanna G. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol. 2016;46(9):1258–68.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Tijerin Bueno M, Greer ML, Malkin D, Villani A, Moineddin R. Whole body MRI in children with cancer predisposition syndromes (abstract). Pediatr Radiol. 2015;45(Suppl 1):S71.Google Scholar
  43. 43.
    Jongmans MC, Loeffen JL, Waanders E, Hoogerbrugge PM, Ligtenberg MJ, Kuiper RP, Hoogerbrugge N. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–25.PubMedGoogle Scholar
  44. 44.
    Brodeur GM, Nichols KE, Plon SE, Schiffman JD, Malkin D. Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res. 2017;23(11):e1–5.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Oberg JA, Glade Bender JL, Sulis ML, Pendrick D, Sierci AN, Hsiao SJ, et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 2016;8(1):133.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH, Ding L, et al. The pediatric cancer genome project. Nat Genet. 2012;44(6):619–22.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.PubMedGoogle Scholar
  49. 49.
    Tibussek D, Rademacher C, Caspers J, Turowski B, Schaper J, Antoch G, Klee D. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 2017;285(1):223–30.PubMedGoogle Scholar
  50. 50.
    Davidson AJ, Disma N, de Graaff JC, Withington DE, Dorris L, Bell G, et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet. 2016;387(10015):239–50.PubMedGoogle Scholar
  51. 51.
    Druker H, Zelley K, McGee RB, Scollon SR, Kohlmann WK, Schneider KA, Wolfe Schneider K. Genetic counselor recommendations for cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clin Cancer Res. 2017;23(13):e91–7.PubMedGoogle Scholar
  52. 52.
    Schmidt CO, Sierocinski E, Hegenscheid K, Baumeister SE, Grabe HJ, Völzke H. Impact of whole-body MRI in a general population study. Eur J Epidemiol. 2016;31(1):31–9.PubMedGoogle Scholar
  53. 53.
    McBride KA, Ballinger ML, Schlub TE, Young MA, Tattersall MHN, Kirk J, et al. Psychosocial morbidity in TP53 mutation carriers: is whole-body cancer screening beneficial? Familial Cancer. 2017;16(3):423–32.PubMedGoogle Scholar
  54. 54.
    Achatz MI, Zambetti GP. The inherited p53 mutation in the Brazilian population. Cold Spring Harb Perspect Med. 2016;6(12). pii: a026195.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Ballinger ML, Ferris NJ, Moodie K, Mitchell G, Shanley S, James PA, Thomas DM. Surveillance in germline TP53 mutation carriers utilizing whole-body magnetic resonance imaging. JAMA Oncol. 2017;3(12):1735–6.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Schooler GR, Davis JT, Daldrup-Link H, Frush DP. Variability in billing practices for whole-body magnetic resonance imaging: reply to Degnan et al. Pediatr Radiol. 2019;49(1):154.PubMedGoogle Scholar
  57. 57.
    Rednam SP, Erez A, Druker H, Janeway KA, Kamihara J, Kohlmann WK, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e68–75.PubMedGoogle Scholar
  58. 58.
    Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31(1):41–51.PubMedGoogle Scholar
  59. 59.
    Turkova H, Prodanov T, Maly M, Martucci V, Adams K, Widimsky J Jr, et al. Characteristics and outcomes of metastatic SDHB and sporadic pheochromocytoma/paraganglioma: an National Institutes of Health Study. Endocr Pract. 2016;22(3):302–14.PubMedGoogle Scholar
  60. 60.
    Assadipour Y, Sadowski SM, Alimchandani M, Quezado M, Steinberg SM, Nilubol N, et al. SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery. 2017;161(1):230–9.PubMedGoogle Scholar
  61. 61.
    Jasperson KW, Kohlmann W, Gammon A, Slack H, Buchmann L, Hunt J, et al. Role of rapid sequence whole-body MRI screening in SDH-associated hereditary paraganglioma families. Familial Cancer. 2014;13(2):257–65.PubMedGoogle Scholar
  62. 62.
    Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, Middelton L, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012;188(6):2063–71.PubMedGoogle Scholar
  63. 63.
    Bholah R, Bunchman TE. Review of pediatric pheochromocytoma and paraganglioma. Front Pediatr. 2017;5:155.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Yamanaka R, Hayano A, Takashima Y. Trilateral retinoblastoma: a systematic review of 211 cases. Neurosurg Rev. 2019;42(1):39–48.PubMedGoogle Scholar
  65. 65.
    Draper GJ, Sanders BM, Brownbill PA, Hawkins MM. Patterns of risk of hereditary retinoblastoma and applications to genetic counselling. Br J Cancer. 1992;66(1):211–9.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Friedman DN, Lis E, Sklar CA, Oeffinger KC, Reppucci M, Fleischut MH, et al. Whole-body magnetic resonance imaging (WB-MRI) as surveillance for subsequent malignancies in survivors of hereditary retinoblastoma: a pilot study. Pediatr Blood Cancer. 2014;61(8):1440–4.PubMedGoogle Scholar
  67. 67.
    Kamihara J, Bourdeaut F, Foulkes WD, Molenaar JJ, Mossé YP, Nakagawara A, et al. Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res. 2017;23(13):e98–e106.PubMedGoogle Scholar
  68. 68.
    de Jong MC, Kors WA, de Graaf P, Castelijns JA, Kivelä T, Moll AC. Trilateral retinoblastoma: a systematic review and meta-analysis. Lancet Oncol. 2014;15(10):1157–67.PubMedGoogle Scholar
  69. 69.
    Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51(6):355–65.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, Brugières L. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23(11):e32–7.Google Scholar
  71. 71.
    Evans DGR, Salvador H, Chang VY, Erez A, Voss SD, Druker H, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res. 2017;23(12):e54–61.PubMedGoogle Scholar
  72. 72.
    Evans DGR, Salvador H, Chang VY, Erez A, Voss SD, Schneider KW, et al. Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res. 2017;23(12):e46–53.PubMedGoogle Scholar
  73. 73.
    Averill LW, Acikgoz G, Miller RE, Kandula VV, Epelman M. Update on pediatric leukemia and lymphoma imaging. Semin Ultrasound CT MR. 2013;34(6):578–99.PubMedGoogle Scholar
  74. 74.
    Kelly KM. Hodgkin lymphoma in children and adolescents: improving the therapeutic index. Blood. 2015;126(22):2452–8.PubMedGoogle Scholar
  75. 75.
    Littooij AS, Kwee TC, de Keizer B, Bruin MC, Coma A, Beek FJ, et al. Whole-body MRI-DWI for assessment of residual disease after completion of therapy in lymphoma: a prospective multicenter study. J Magn Reson Imaging. 2015;42(6):1646–55.PubMedGoogle Scholar
  76. 76.
    Littooij AS, Kwee TC, Barber I, Granata C, Vermoolen MA, Enriquez G, et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol. 2014;24(5):1153–65.PubMedGoogle Scholar
  77. 77.
    Zaveri J, La Q, Yarmish G, Neuman J. More than just Langerhans cell histiocytosis: a radiologic review of histiocytic disorders. Radiographics. 2014;34(7):2008–24.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Tran G, Huynh TN, Paller AS. Langerhans cell histiocytosis: a neoplastic disorder driven by Ras-ERK pathway mutations. J Am Acad Dermatol. 2018;78(3):579–90.e4.PubMedGoogle Scholar
  79. 79.
    Goo HW, Yang DH, Ra YS, Song JS, Im HJ, Seo JJ, et al. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol. 2006;36(10):1019–31.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Samet J, Weinstein J, Fayad LM. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything? Skelet Radiol. 2016;45(5):607–13.Google Scholar
  81. 81.
    Guiomar R, Pereira da Silva S, Conde P, Cristóvão P, Maia AC, Pechirra P, et al. Cross-protection to new drifted influenza a(H3) viruses and prevalence of protective antibodies to seasonal influenza, during 2014 in Portugal. Vaccine. 2017;35(16):2092–9.PubMedGoogle Scholar
  82. 82.
    Smets AM, Deurloo EE, Slager TJE, Stoker J, Bipat S. Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors – systematic review. Pediatr Radiol. 2018;48(2):241–52.PubMedGoogle Scholar
  83. 83.
    Guimarães MD, Noschang J, Teixeira SR, Santos MK, Lederman HM, Tostes V, et al. Whole-body MRI in pediatric patients with cancer. Cancer Imaging. 2017;17(1):6.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Burris NS, Johnson KM, Larson PE, Hope MD, Nagle SK, Behr SC, Hope TA. Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016;278(1):239–46.PubMedGoogle Scholar
  85. 85.
    Littooij AS, Kwee TC, Enríquez G, Verbeke JI, Granata C, Beishuizen A, et al. Whole-body MRI reveals high incidence of osteonecrosis in children treated for Hodgkin lymphoma. Br J Haematol. 2017;176(4):637–42.PubMedGoogle Scholar
  86. 86.
    Pratesi A, Medici A, Bresci R, Micheli A, Barni S, Pratesi C. Sickle cell-related bone marrow complications: the utility of diffusion-weighted magnetic resonance imaging. J Pediatr Hematol Oncol. 2013;35(4):329–30.PubMedGoogle Scholar
  87. 87.
    Albano D, Patti C, Sconfienza LM, Galia M. Whole-body MRI in the early detection of multifocal osteonecrosis. Br J Radiol. 2017;90(1077):20170240.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Antoon JW, Potisek NM, Lohr JA. Pediatric fever of unknown origin. Pediatr Rev. 2015;36(9):380–90; quiz 391PubMedGoogle Scholar
  89. 89.
    Lindsay AJ, Delgado J, Jaramillo D, Chauvin NA. Extended field of view magnetic resonance imaging for suspected osteomyelitis in very young children: is it useful? Pediatr Radiol. 2019;49(3):379–86.PubMedGoogle Scholar
  90. 90.
    von Kalle T, Heim N, Hospach T, Langendörfer M, Winkler P, Stuber T. Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo. 2013;185(7):655–61.Google Scholar
  91. 91.
    Voit AM, Arnoldi AP, Douis H, Bleisteiner F, Jansson MK, Reiser MF, et al. Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol. 2015;42(8):1455–62.PubMedGoogle Scholar
  92. 92.
    Weiss PF. Update on enthesitis-related arthritis. Curr Opin Rheumatol. 2016;28(5):530–6.PubMedGoogle Scholar
  93. 93.
    Østergaard M, Eshed I, Althoff CE, Poggenborg RP, Diekhoff T, Krabbe S, et al. Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol. 2017;44(11):1699–705.PubMedGoogle Scholar
  94. 94.
    Perez-Rossello JM, Connolly SA, Newton AW, Zou KH, Kleinman PK. Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol. 2010;195(3):744–50.PubMedGoogle Scholar
  95. 95.
    Merlini L, Carpentier M, Ferrey S, Anooshiravani M, Poletti PA, Hanquinet S. Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol. 2017;88:155–62.PubMedGoogle Scholar
  96. 96.
    Zhen-Guo H, Min-Xing Y, Xiao-Liang C, Ran Y, He C, Bao-Xiang G, et al. Value of whole-body magnetic resonance imaging for screening multifocal osteonecrosis in patients with polymyositis/dermatomyositis. Br J Radiol. 2017;90(1073):20160780.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Thyoka M, Adekunle O, Pilkington C, Walters S, Arthurs OJ, Humphries P, et al. Introduction of a novel magnetic resonance imaging-based scoring system for assessing disease activity in children with juvenile dermatomyositis. Rheumatology (Oxford). 2018;57(9):1661–8.Google Scholar
  98. 98.
    Huang ZG, Gao BX, Chen H, Yang MX, Chen XL, Yan R, et al. An efficacy analysis of whole-body magnetic resonance imaging in the diagnosis and follow-up of polymyositis and dermatomyositis. PLoS One. 2017;12(7):e0181069.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Quijano-Roy S, Avila-Smirnow D, Carlier RY. WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord. 2012;22(Suppl 2):S68–84.PubMedGoogle Scholar
  100. 100.
    Hollingsworth KG, de Sousa PL, Straub V, Carlier PG. Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops, 2 May 2010, Stockholm, Sweden, 1–2 October 2009, Paris, France. Neuromuscul Disord. 2012;22(Suppl 2):S54–67.PubMedGoogle Scholar
  101. 101.
    Arthurs OJ, van Rijn RR, Whitby EH, Johnson K, Miller E, Stenzel M, et al. ESPR postmortem imaging task force: where we begin. Pediatr Radiol. 2016;46(9):1363–9.PubMedGoogle Scholar
  102. 102.
    Shruthi M, Gupta N, Jana M, Mridha AR, Kumar A, Agarwal R, et al. Comparative study of conventional and virtual autopsy using postmortem MRI in the phenotypic characterization of stillbirths and malformed fetuses. Ultrasound Obstet Gynecol. 2018;51(2):236–45.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Diagnostic ImagingThe Hospital for Sick Children, University of TorontoTorontoCanada

Personalised recommendations