• Kyung Rae Kim
  • Edward Y. Lee
  • Raja ShaikhEmail author


Recent developments in lymphatic imaging have improved our understanding of the central lymphatic disorders and their management. Magnetic resonance (MR) lymphangiography has been increasingly used as an initial imaging modality for the diagnosis of lymphatic disorders, guiding treatment decisions and evaluating outcomes after treatment in the pediatric population.

MR lymphangiography has several advantages over conventional fluoroscopic intranodal lymphangiography with oil contrast. It has the ability to obtain high-quality cross-sectional anatomical information and real-time dynamic imaging while avoiding exposure to ionizing radiation and other risks of oil contrast in patients with a right-to-left cardiac shunt, severe pulmonary insufficiency, and thyroid dysfunction.

This chapter reviews up-to-date imaging techniques and clinical applications of MR lymphangiography for assessing the central conducting lymphatic ducts and their abnormalities in the pediatric population.


Magnetic resonance imaging Lymphangiography Lymphatic disorders Central conducting lymphatic anomaly Chylothorax Chylous ascites Protein-losing enteropathy 


  1. 1.
    Shaikh R, Biko DM, Lee EY. MR imaging evaluation of pediatric lymphatics: overview of techniques and imaging findings. Magn Reson Imaging Clin. 2019;27(2):373–85.CrossRefGoogle Scholar
  2. 2.
    Dori Y. Novel lymphatic imaging techniques. Tech Vasc Interv Radiol. 2016;19(4):255–61.CrossRefGoogle Scholar
  3. 3.
    Krishnamurthy R, Hernandez A, Kavuk S, Annam A, Pimpalwar S. Imaging the central conducting lymphatics: initial experience with dynamic MR lymphangiography. Radiology. 2015;274(3):871–8.CrossRefGoogle Scholar
  4. 4.
    Weiss M, Baumeister RG, Tatsch K, Hahn K. Lymphoscintigraphy for non-invasive long term follow-up of functional outcome in patients with autologous lymph vessel transplantation. Nuklearmedizin. 1996;35(6):236–42.. [Article in German]CrossRefGoogle Scholar
  5. 5.
    Weissleder H, Weissleder R. Lymphedema: evaluation of qualitative and quantitative lymphoscintigraphy in 238 patients. Radiology. 1988;167(3):729–35.CrossRefGoogle Scholar
  6. 6.
    Sheybani A, Gaba RC, Minocha J. Cerebral embolization of ethiodized oil following intranodal lymphangiography. Semin Intervent Radiol. 2015;32(1):10–3.CrossRefGoogle Scholar
  7. 7.
    Alomari MH, Lillis A, Kerr C, Newburger JW, Quinonez L, Alomari AI. The use of non-ionic contrast agent for lymphangiography and embolization of the thoracic duct. Cardiovasc Intervent Radiol. 2019;42(3):481–3.CrossRefGoogle Scholar
  8. 8.
    Cherella CE, Breault DT, Thaker V, Levine B-S, Smith JR. Early identification of primary hypothyroidism in neonates exposed to intralymphatic iodinated contrast: a case series. J Clin Endocrinol Metab. 2018;103(10):3585–8.CrossRefGoogle Scholar
  9. 9.
    Chavhan GB, Amaral JG, Temple M, Itkin M. MR lymphangiography in children: technique and potential applications. Radiographics. 2017;37(6):1775–90.CrossRefGoogle Scholar
  10. 10.
    Notohamiprodjo M, Baumeister RG, Jakobs TF, Bauner KU, Boehm HF, Horng A, et al. MR-lymphangiography at 3.0 T—a feasibility study. Eur Radiol. 2009;19(11):2771–8.CrossRefGoogle Scholar
  11. 11.
    Pamarthi V, Pabon-Ramos WM, Marnell V, Hurwitz LM. MRI of the central lymphatic system: indications, imaging technique, and pre-procedural planning. Top Magn Reson Imaging. 2017;26(4):175–80.CrossRefGoogle Scholar
  12. 12.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.CrossRefGoogle Scholar
  13. 13.
    Williams KR, Burford TH. The management of chylothorax. Ann Surg. 1964;160:131–40.CrossRefGoogle Scholar
  14. 14.
    Hsu MC, Itkin M. Lymphatic anatomy. Tech Vasc Interv Radiol. 2016;19(4):247–54.CrossRefGoogle Scholar
  15. 15.
    Van der Putte S, Van Limborgh J. The embryonic development of the main lymphatics in man. Acta Morphol Neerl Scand. 1980;18(4):323–35.PubMedGoogle Scholar
  16. 16.
    Földi M, Földi E, Strößenreuther R, Kubik S. Földi’s textbook of lymphology: for physicians and lymphedema therapists. Philadelphia: Elsevier; 2012.Google Scholar
  17. 17.
    El-Chemaly S, Levine SJ, Moss J. Lymphatics in lung disease. Ann N Y Acad Sci. 2008;1131:195–202.CrossRefGoogle Scholar
  18. 18.
    Levick J, McHale N. The physiology of lymph production and propulsion. In: Browse N, Burnand K, Mortimer PS, editors. Diseases of the lymphatics. London: Arnold (Hodder); 2003. p. 44–64.Google Scholar
  19. 19.
    Loukas M, Wartmann CT, Louis RG Jr, Tubbs RS, Salter EG, Gupta AA, et al. Cisterna chyli: a detailed anatomic investigation. Clin Anat. 2007;20(6):683–8.CrossRefGoogle Scholar
  20. 20.
    Hematti H, Mehran RJ. Anatomy of the thoracic duct. Thorac Surg Clin. 2011;21(2):229–38.CrossRefGoogle Scholar
  21. 21.
    Riquet M, Barthes FLP, Souilamas R, Hidden G. Thoracic duct tributaries from intrathoracic organs. Ann Thorac Surg. 2002;73(3):892–8.CrossRefGoogle Scholar
  22. 22.
    Skandalakis JE, Skandalakis LJ, Skandalakis PN. Anatomy of the lymphatics. Surg Oncol Clin N Am. 2007;16(1):1–16.CrossRefGoogle Scholar
  23. 23.
    Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev. 1990;70(4):987–1028.CrossRefGoogle Scholar
  24. 24.
    Loukas M, Bellary SS, Kuklinski M, Ferrauiola J, Yadav A, Shoja MM, et al. The lymphatic system: a historical perspective. Clin Anat. 2011;24(7):807–16.CrossRefGoogle Scholar
  25. 25.
    Unthank JL, Bohlen HG. Lymphatic pathways and role of valves in lymph propulsion from small intestine. Am J Physiol. 1988;254(3. Pt 1):G389–98.PubMedGoogle Scholar
  26. 26.
    McGrath EE, Blades Z, Anderson PB. Chylothorax: aetiology, diagnosis and therapeutic options. Respir Med. 2010;104(1):1–8.CrossRefGoogle Scholar
  27. 27.
    Esther CR Jr, Barker PM. Pulmonary lymphangiectasia: diagnosis and clinical course. Pediatr Pulmonol. 2004;38(4):308–13.CrossRefGoogle Scholar
  28. 28.
    Taghinia AH, Upton J, Trenor CC III, Alomari AI, Lillis AP, Shaikh R, et al. Lymphaticovenous bypass of the thoracic duct for the treatment of chylous leak in central conducting lymphatic anomalies. J Pediatr Surg. 2019;54(3):562–8.CrossRefGoogle Scholar
  29. 29.
    Melduni RM, Oh JK, Bunch TJ, Sinak LJ, Gloviczki P. Reconstruction of occluded thoracic duct for treatment of chylopericardium: a novel surgical therapy. J Vasc Surg. 2008;48(6):1600–2.CrossRefGoogle Scholar
  30. 30.
    Schild HH, Strassburg CP, Welz A, Kalff J. Treatment options in patients with chylothorax. Dtsch Arztebl Int. 2013;110(48):819–26.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bauman ME, Moher C, Bruce AK, Kuhle S, Kaur S, Massicotte MP. Chylothorax in children with congenital heart disease: incidence of thrombosis. Thromb Res. 2013;132(2):e83–5.CrossRefGoogle Scholar
  32. 32.
    Mery CM, Moffett BS, Khan MS, Zhang W, Guzman-Pruneda FA, Fraser CD Jr, et al. Incidence and treatment of chylothorax after cardiac surgery in children: analysis of a large multi-institution database. J Thorac Cardiovasc Surg. 2014;147(2):678–86.e1; discussion 85–6.CrossRefGoogle Scholar
  33. 33.
    Dori Y, Keller MS, Rome JJ, Gillespie MJ, Glatz AC, Dodds K, et al. Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease. Circulation. 2016;133(12):1160–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Interventional Radiology, Department of RadiologyUNC Medical Center/University of North Carolina School of MedicineChapel HillUSA
  2. 2.Division of Thoracic Imaging, Department of RadiologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Division of Interventional Radiology, Department of RadiologyBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations