The Thyroid-Oxidative Stress Axis in Heart Failure

  • Melania Gaggini
  • Irene Traghella
  • Cristina VassalleEmail author


Increased or reduced action of thyroid hormones (THs), both hyper- and hypothyroidism, may have relevant cardiovascular effects, which include regulation of cardiac contractility and heart rate, diastolic function, and systemic vascular resistance, thus affecting the onset and development of heart failure (HF). Many of these actions are determined by thyroid-induced oxidative stress modulation, for example, through the direct production of hydrogen peroxide (H2O2) during the synthesis of THs. Oxidative stress alteration, as both increased oxidative stress and reduced availability of antioxidants, exacerbated oxidation of low density lipoproteins, modulated nitric oxide bioavailability, and increased inflammation. These events have been clearly involved in any phase of HF development and extent. The present review aims to discuss oxidative stress status under altered thyroid states in HF pathology.


Thyroid hormones Oxidative stress Heart failure Biomarkers 



A sincere thanks to Dr. Laura SABATINO for proofreading this manuscript.


  1. 1.
    Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52:601–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1:483–91.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Resch U, Helsel G, Tatzber F, Sinzinger H. Antioxidant status in thyroid dysfunction. Clin Chem Lab Med. 2002;40:1132–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, Currò D. Thyroid hormones, oxidative stress, and inflammation. Mediat Inflamm. 2016;2016:6757154.CrossRefGoogle Scholar
  5. 5.
    Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxidative Med Cell Longev. 2015;2015:854265.CrossRefGoogle Scholar
  6. 6.
    Costa VM, Carvalho F, Duarte JA, Bastos Mde L, Remião F. The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol. 2013;26:1285–311.PubMedCrossRefGoogle Scholar
  7. 7.
    Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther. 2017;31:593–608.PubMedCrossRefGoogle Scholar
  8. 8.
    Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014;10:582–91.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid states. ScientificWorldJournal. 2012;2012:741861.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gredilla R, Barja G, López-Torres M. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart. Free Radic Res. 2001;35:417–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 2006;63:414–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Venditti P, Balestrieri M, Di Meo S, De Leo T. Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J Endocrinol. 1997;155:151–7.PubMedCrossRefGoogle Scholar
  13. 13.
    da Rosa Araujo AS, Silva de Miranda MF, de Oliveira UO, Fernandes T, Llesuy S, Rios Kucharski LC, Khaper N, Belló-Klein A. Increased resistance to hydrogen peroxide-induced cardiac contracture is associated with decreased myocardial oxidative stress in hypothyroid rats. Cell Biochem Funct. 2010;28:38–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Shinohara R, Mano T, Nagasaka A, Hayashi R, Uchimura K, Nakano I, Watanabe F, Tsugawa T, Makino M, Kakizawa H, Nagata M, Iwase K, Ishizuki Y, Itoh M. Lipid peroxidation levels in rat cardiac muscle are affected by age and thyroid status. J Endocrinol. 2000;164:97–102.PubMedCrossRefGoogle Scholar
  15. 15.
    Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology. 1987;121:2112–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Bastug E, Tasliyurt T, Kutluturk F, Sahin S, Yilmaz A, Sivgin H, Yelken BM, Ozturk B, Yilmaz A, Sahin S. Evaluation of oxidative status with exhaled breath 8-isoprostane levels in patients with hyperthyroidism. Endocr Metab Immune Disord Drug Targets. 2013;13:306–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Erem C, Suleyman AK, Civan N, Mentese A, Nuhoglu İ, Uzun A, Ersoz HO, Deger O. Ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress. Endocr J. 2015;62:493–501.PubMedCrossRefGoogle Scholar
  18. 18.
    Cebeci E, Alibaz-Oner F, Usta M, Yurdakul S, Erguney M. Evaluation of oxidative stress, the activities of paraoxonase and arylesterase in patients with subclinical hypothyroidism. J Investig Med. 2012;60:23–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Reddy VS, Bukke S, Mahato K, Kumar V, Reddy NV, Munikumar M, Vodelu B. A meta-analysis of the association of serum ischaemia-modified albumin levels with human hypothyroidism and hyperthyroidism. Biosci Rep. 2017;37.Google Scholar
  20. 20.
    Erem C, Suleyman AK, Civan N, Mentese A, Nuhoglu İ, Uzun A, Coskun H, Deger O. The effect of L-thyroxine replacement therapy on ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hypothyroidism. Endocr Res. 2016;41:350–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheserek MJ, Wu GR, Ntazinda A, Shi YH, Shen LY, Le GW. Association between thyroid hormones, lipids and oxidative stress markers in subclinical hypothyroidism. J Med Biochem. 2015;34:323–31.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Reddy VS, Gouroju S, Suchitra MM, Suresh V, Sachan A, Srinivasa Rao PV, Bitla AR. Antioxidant defense in overt and subclinical hypothyroidism. Horm Metab Res. 2013;45:754–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Öztürk Ü, Vural P, Özderya A, Karadağ B, Doğru-Abbasoğlu S, Uysal M. Oxidative stress parameters in serum and low density lipoproteins of Hashimoto’s thyroiditis patients with subclinical and overt hypothyroidism. Int Immunopharmacol. 2012;14:349–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Pantos C, Mourouzis I. The emerging role of TRα1 in cardiac repair: potential therapeutic implications. Oxidative Med Cell Longev. 2014;2014:481482.CrossRefGoogle Scholar
  25. 25.
    Bengel FM, Nekolla SG, Ibrahim T, Weniger C, Ziegler SI, Schwaiger M. Effect of thyroid hormones on cardiac function, geometry, and oxidative metabolism assessed noninvasively by positron emission tomography and magnetic resonance imaging. J Clin Endocrinol Metab. 2000;85:1822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, Peeters R, Zaman A, Iervasi G. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71:1781–96.CrossRefGoogle Scholar
  27. 27.
    Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, Lee KL, Bardy GH. Thyroid function in heart failure and impact on mortality. JACC Heart Fail. 2013;1:48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.CrossRefGoogle Scholar
  29. 29.
    Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med. 1990;8:293–303.PubMedCrossRef