Advertisement

Heart Drugs and Influences on TH Metabolism

  • Fausto BogazziEmail author
  • Daniele Cappellani
Chapter
  • 36 Downloads

Abstract

Antiarrhythmic drugs, particularly amiodarone, may influence thyroid hormone metabolism and are, sometimes, responsible for overt thyroid dysfunction.

The effects of amiodarone on the thyroid have been extensively studied over the last decades. Changes of thyroid hormone concentrations (increased FT4 and low-to-normal FT3) occur in euthyroid patients during amiodarone therapy due to the inhibiting effect of the drug on peripheral metabolism of thyroid hormones. However, about 15% of the patients develop a thyroid disorder, either amiodarone-induced hypothyroidism (AIH) or amiodarone-induced thyrotoxicosis (AIT), mainly depending on iodine-supply. AIT, which can occur in the form of a true hyperthyroidism (type 1 AIT), or in that of a destructive thyroiditis (type 2 AIT), may represent a life-threatening condition, whose diagnosis and management is still challenging.

Dronedarone, the non-iodinated analog of amiodarone, has no relevant clinical thyroidal side effects, even though a possible interaction with thyroid hormone receptor has been proposed.

Keywords

Amiodarone Dronedarone Thyroid Thyrotoxicosis AIT Hypothyroidism AIH 

Notes

Acknowledgments

Conflict of interest statement: The authors have nothing to disclose.

References

  1. 1.
    Roy D, Talajic M, Dorian P, Connolly S, Eisenberg MJ, Green M, et al. Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med. 2000;342(13):913–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Bogazzi F, Tomisti L, Bartalena L, Aghini-Lombardi F, Martino E. Amiodarone and the thyroid: a 2012 update. J Endocrinol Invest. 2012;35(3):340–8.PubMedGoogle Scholar
  3. 3.
    Roden DM. Antiarrhythmic drugs. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman & Gilman’s—the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2005. p. 899–932.Google Scholar
  4. 4.
    Martino E, Bartalena L, Bogazzi F, Braverman LE. The effects of amiodarone on the thyroid. Endocr Rev. 2001;22(2):240–54.PubMedGoogle Scholar
  5. 5.
    Bogazzi F, Bartalena L, Gasperi M, Braverman LE, Martino E. The various effects of amiodarone on thyroid function. Thyroid. 2001;11(5):511–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Bogazzi F, Bartalena L, Martino E. Approach to the patient with amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab. 2010;95(6):2529–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartalena L, Bogazzi F, Chiovato L, Hubalewska-Dydejczyk A, Links TP, Vanderpump M. 2018 European Thyroid Association (ETA) guidelines for the management of amiodarone-associated thyroid dysfunction. Eur Thyroid J. 2018;7(2):55–66.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Delange FM, Ermans AM. Iodine deficiency. In: Braverman LE, Utiger RD, editors. Werner and Ingbar’s the thyroid—a clinical and fundamental text. 8th ed. Philadelphia: Lippincott-Raven; 2000. p. 295–315.Google Scholar
  9. 9.
    Han TS, Williams GR, Vanderpump MP. Benzofuran derivatives and the thyroid. Clin Endocrinol. 2009;70(1):2–13.CrossRefGoogle Scholar
  10. 10.
    Holt DW, Tucker GT, Jackson PR, Storey GC. Amiodarone pharmacokinetics. Am Heart J. 1983;106(4 Pt 2):840–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Aanderud S, Sundsfjord J, Aarbakke J. Amiodarone inhibits the conversion of thyroxine to triiodothyronine in isolated rat hepatocytes. Endocrinology. 1984;115(4):1605–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Hershman JM, Nademanee K, Sugawara M, Pekary AE, Ross R, Singh BN, et al. Thyroxine and triiodothyronine kinetics in cardiac patients taking amiodarone. Acta Endocrinol (Copenh). 1986;111(2):193–9.CrossRefGoogle Scholar
  13. 13.
    Nademanee K, Singh BN, Callahan B, Hendrickson JA, Hershman JM. Amiodarone, thyroid hormone indexes, and altered thyroid function: long-term serial effects in patients with cardiac arrhythmias. Am J Cardiol. 1986;58(10):981–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolff J, Chaikoff IL, et al. The temporary nature of the inhibitory action of excess iodine on organic iodine synthesis in the normal thyroid. Endocrinology. 1949;45(5):504–13, illustPubMedCrossRefGoogle Scholar
  15. 15.
    Martino E, Aghini-Lombardi F, Mariotti S, Bartalena L, Lenziardi M, Ceccarelli C, et al. Amiodarone iodine-induced hypothyroidism: risk factors and follow-up in 28 cases. Clin Endocrinol. 1987;26(2):227–37.CrossRefGoogle Scholar
  16. 16.
    Eskes SA, Wiersinga WM. Amiodarone and thyroid. Best Pract Res Clin Endocrinol Metab. 2009;23(6):735–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Schroder-van der Elst JP, van der Heide D. Thyroxine, 3,5,3′-triiodothyronine, and 3,3′,5′-triiodothyronine concentrations in several tissues of the rat: effects of amiodarone and desethylamiodarone on thyroid hormone metabolism [corrected]. Endocrinology. 1990;127(4):1656–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiersinga WM, Trip MD. Amiodarone and thyroid hormone metabolism. Postgrad Med J. 1986;62(732):909–14.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    de Jong M, Docter R, Van der Hoek H, Krenning E, Van der Heide D, Quero C, et al. Different effects of amiodarone on transport of T4 and T3 into the perfused rat liver. Am J Physiol. 1994;266(1 Pt 1):E44–9.PubMedGoogle Scholar
  20. 20.
    van Beeren HC, Kwakkel J, Ackermans MT, Wiersinga WM, Fliers E, Boelen A. Action of specific thyroid hormone receptor alpha(1) and beta(1) antagonists in the central and peripheral regulation of thyroid hormone metabolism in the rat. Thyroid. 2012;22(12):1275–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Rani CS. Amiodarone effects on thyrotropin receptors and responses stimulated by thyrotropin and carbachol in cultured dog thyroid cells. Endocrinology. 1990;127(6):2930–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Hartong R, Wiersinga WM, Plomp TA. Amiodarone reduces the effect of T3 on beta adrenergic receptor density in rat heart. Horm Metab Res. 1990;22(2):85–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Gotzsche LB, Orskov H. Cardiac triiodothyronine nuclear receptor binding capacities in amiodarone-treated, hypo- and hyperthyroid rats. Eur J Endocrinol. 1994;130(3):281–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Shahrara S, Drvota V. Thyroid hormone alpha1 and beta1 receptor mRNA are downregulated by amiodarone in mouse myocardium. J Cardiovasc Pharmacol. 1999;34(2):261–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Burger A, Dinichert D, Nicod P, Jenny M, Lemarchand-Beraud T, Vallotton MB. Effect of amiodarone on serum triiodothyronine, reverse triiodothyronine, thyroxin, and thyrotropin. A drug influencing peripheral metabolism of thyroid hormones. J Clin Invest. 1976;58(2):255–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Melmed S, Nademanee K, Reed AW, Hendrickson JA, Singh BN, Hershman JM. Hyperthyroxinemia with bradycardia and normal thyrotropin secretion after chronic amiodarone administration. J Clin Endocrinol Metab. 1981;53(5):997–1001.PubMedCrossRefGoogle Scholar
  27. 27.
    Stoykov I, van Beeren HC, Moorman AF, Christoffels VM, Wiersinga WM, Bakker O. Effect of amiodarone and dronedarone administration in rats on thyroid hormone-dependent gene expression in different cardiac components. Eur J Endocrinol. 2007;156(6):695–702.PubMedCrossRefGoogle Scholar
  28. 28.
    Bogazzi F, Bartalena L, Brogioni S, Burelli A, Raggi F, Ultimieri F, et al. Desethylamiodarone antagonizes the effect of thyroid hormone at the molecular level. Eur J Endocrinol. 2001;145(1):59–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Chiovato L, Martino E, Tonacchera M, Santini F, Lapi P, Mammoli C, et al. Studies on the in vitro cytotoxic effect of amiodarone. Endocrinology. 1994;134(5):2277–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Beddows SA, Page SR, Taylor AH, McNerney R, Whitley GS, Johnstone AP, et al. Cytotoxic effects of amiodarone and desethylamiodarone on human thyrocytes. Biochem Pharmacol. 1989;38(24):4397–403.PubMedCrossRefGoogle Scholar
  31. 31.
    Di Matola T, D'Ascoli F, Fenzi G, Rossi G, Martino E, Bogazzi F, et al. Amiodarone induces cytochrome c release and apoptosis through an iodine-independent mechanism. J Clin Endocrinol Metab. 2000;85(11):4323–30.PubMedGoogle Scholar
  32. 32.
    Vitale M, Di Matola T, D'Ascoli F, Salzano S, Bogazzi F, Fenzi G, et al. Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinology. 2000;141(2):598–605.PubMedCrossRefGoogle Scholar
  33. 33.
    Lombardi A, Inabnet WB 3rd, Owen R, Farenholtz KE, Tomer Y. Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis. J Clin Endocrinol Metab. 2015;100(1):E1–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Pitsiavas V, Smerdely P, Li M, Boyages SC. Amiodarone induces a different pattern of ultrastructural change in the thyroid to iodine excess alone in both the BB/W rat and the Wistar rat. Eur J Endocrinol. 1997;137(1):89–98.PubMedCrossRefGoogle Scholar
  35. 35.
    Brennan MD, Erickson DZ, Carney JA, Bahn RS. Nongoitrous (type I) amiodarone-associated thyrotoxicosis: evidence of follicular disruption in vitro and in vivo. Thyroid. 1995;5(3):177–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Safran M, Martino E, Aghini-Lombardi F, Bartalena L, Balzano S, Pinchera A, et al. Effect of amiodarone on circulating antithyroid antibodies. BMJ. 1988;297(6646):456–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Loviselli A, Bartalena L, Balzano S, Aghini-Lombardi F, Sica V, Pilosu R, et al. Absence of serum thyroid hormone autoantibodies in patients chronically treated with amiodarone. J Endocrinol Invest. 1988;11(4):323–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Iervasi G, Clerico A, Bonini R, Manfredi C, Berti S, Ravani M, et al. Acute effects of amiodarone administration on thyroid function in patients with cardiac arrhythmia. J Clin Endocrinol Metab. 1997;82(1):275–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Amico JA, Richardson V, Alpert B, Klein I. Clinical and chemical assessment of thyroid function during therapy with amiodarone. Arch Intern Med. 1984;144(3):487–90.PubMedCrossRefGoogle Scholar
  40. 40.
    Martino E, Safran M, Aghini-Lombardi F, Rajatanavin R, Lenziardi M, Fay M, et al. Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann Intern Med. 1984;101(1):28–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Bogazzi F, Bartalena L, Dell'Unto E, Tomisti L, Rossi G, Pepe P, et al. Proportion of type 1 and type 2 amiodarone-induced thyrotoxicosis has changed over a 27-year period in Italy. Clin Endocrinol. 2007;67(4):533–7.Google Scholar
  42. 42.
    Ahmed S, Van Gelder IC, Wiesfeld AC, Van Veldhuisen DJ, Links TP. Determinants and outcome of amiodarone-associated thyroid dysfunction. Clin Endocrinol. 2011;75(3):388–94.CrossRefGoogle Scholar
  43. 43.
    Trip MD, Wiersinga W, Plomp TA. Incidence, predictability, and pathogenesis of amiodarone-induced thyrotoxicosis and hypothyroidism. Am J Med. 1991;91(5):507–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Figge J, Dluhy RG. Amiodarone-induced elevation of thyroid stimulating hormone in patients receiving levothyroxine for primary hypothyroidism. Ann Intern Med. 1990;113(7):553–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Benjamens S, Dullaart RPF, Sluiter WJ, Rienstra M, van Gelder IC, Links TP. The clinical value of regular thyroid function tests during amiodarone treatment. Eur J Endocrinol. 2017;177(1):9–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Bogazzi F, Bartalena L, Tomisti L, Dell’Unto E, Cosci C, Sardella C, et al. Potassium perchlorate only temporarily restores euthyroidism in patients with amiodarone-induced hypothyroidism who continue amiodarone therapy. J Endocrinol Invest. 2008;31(6):515–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Martino E, Mariotti S, Aghini-Lombardi F, Lenziardi M, Morabito S, Baschieri L, et al. Short term administration of potassium perchlorate restores euthyroidism in amiodarone iodine-induced hypothyroidism. J Clin Endocrinol Metab. 1986;63(5):1233–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Tomisti L, Rossi G, Bartalena L, Martino E, Bogazzi F. The onset time of amiodarone-induced thyrotoxicosis (AIT) depends on AIT type. Eur J Endocrinol. 2014;171(3):363–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Wiersinga W. Amiodarone and the thyroid. In: Grossman A, editor. Pharmacotherapeutics of the thyroid gland. Berlin: Springer; 1997. p. 129–35.Google Scholar
  50. 50.
    Balzano S, Sau F, Bartalena L, Ruscazio M, Balestrieri A, Cherchi A, et al. Diagnosis of amiodarone-iodine-induced thyrotoxicosis(AIIT) associated with severe nonthyroidal illness. J Endocrinol Invest. 1987;10(6):589–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Conen D, Melly L, Kaufmann C, Bilz S, Ammann P, Schaer B, et al. Amiodarone-induced thyrotoxicosis: clinical course and predictors of outcome. J Am Coll Cardiol. 2007;49(24):2350–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Basaria S, Cooper DS. Amiodarone and the thyroid. Am J Med. 2005;118(7):706–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Lu Y, Won KA, Nelson BJ, Qi D, Rausch DJ, Asinger RW. Characteristics of the amiodarone-warfarin interaction during long-term follow-up. Am J Health Syst Pharm. 2008;65(10):947–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Kurnik D, Loebstein R, Farfel Z, Ezra D, Halkin H, Olchovsky D. Complex drug-drug-disease interactions between amiodarone, warfarin, and the thyroid gland. Medicine (Baltimore). 2004;83(2):107–13.CrossRefGoogle Scholar
  55. 55.
    Tomisti L, Del Re M, Bartalena L, Tanda ML, Pucci A, Pambianco F, et al. Effects of amiodarone, thyroid hormones and CYP2C9 and VKORC1 polymorphisms on warfarin metabolism: a review of the literature. Endocr Pract. 2013;19(6):1043–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Yiu KH, Jim MH, Siu CW, Lee CH, Yuen M, Mok M, et al. Amiodarone-induced thyrotoxicosis is a predictor of adverse cardiovascular outcome. J Clin Endocrinol Metab. 2009;94(1):109–14.PubMedCrossRefGoogle Scholar
  57. 57.
    O’Sullivan AJ, Lewis M, Diamond T. Amiodarone-induced thyrotoxicosis: left ventricular dysfunction is associated with increased mortality. Eur J Endocrinol. 2006;154(4):533–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Tanda ML, Piantanida E, Lai A, Liparulo L, Sassi L, Bogazzi F, et al. Diagnosis and management of amiodarone-induced thyrotoxicosis: similarities and differences between North American and European thyroidologists. Clin Endocrinol. 2008;69(5):812–8.CrossRefGoogle Scholar
  59. 59.
    Raghavan RP, Taylor PN, Bhake R, Vaidya B, Martino E, Bartalena L, et al. Amiodarone-induced thyrotoxicosis, an overview of UK management. Clin Endocrinol. 2012;77(6):936–7.CrossRefGoogle Scholar
  60. 60.
    Eaton SE, Euinton HA, Newman CM, Weetman AP, Bennet WM. Clinical experience of amiodarone-induced thyrotoxicosis over a 3-year period: role of colour-flow Doppler sonography. Clin Endocrinol. 2002;56(1):33–8.CrossRefGoogle Scholar
  61. 61.
    Tomisti L, Urbani C, Rossi G, Latrofa F, Sardella C, Manetti L, et al. The presence of anti-thyroglobulin (TgAb) and/or anti-thyroperoxidase antibodies (TPOAb) does not exclude the diagnosis of type 2 amiodarone-induced thyrotoxicosis. J Endocrinol Invest. 2016;39(5):585–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Martino E, Bartalena L, Mariotti S, Aghini-Lombardi F, Ceccarelli C, Lippi F, et al. Radioactive iodine thyroid uptake in patients with amiodarone-iodine-induced thyroid dysfunction. Acta Endocrinol (Copenh). 1988;119(2):167–73.CrossRefGoogle Scholar
  63. 63.
    Martino E, Aghini-Lombardi F, Lippi F, Baschieri L, Safran M, Braverman LE, et al. Twenty-four hour radioactive iodine uptake in 35 patients with amiodarone associated thyrotoxicosis. J Nucl Med. 1985;26(12):1402–7.PubMedGoogle Scholar
  64. 64.
    Piga M, Cocco MC, Serra A, Boi F, Loy M, Mariotti S. The usefulness of 99mTc-sestaMIBI thyroid scan in the differential diagnosis and management of amiodarone-induced thyrotoxicosis. Eur J Endocrinol. 2008;159(4):423–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Pattison DA, Westcott J, Lichtenstein M, Toh HB, Gunawardana D, Better N, et al. Quantitative assessment of thyroid-to-background ratio improves the interobserver reliability of technetium-99m sestamibi thyroid scintigraphy for investigation of amiodarone-induced thyrotoxicosis. Nucl Med Commun. 2015;36(4):356–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Bogazzi F, Bartalena L, Brogioni S, Mazzeo S, Vitti P, Burelli A, et al. Color flow Doppler sonography rapidly differentiates type I and type II amiodarone-induced thyrotoxicosis. Thyroid. 1997;7(4):541–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Bartalena L, Grasso L, Brogioni S, Aghini-Lombardi F, Braverman LE, Martino E. Serum interleukin-6 in amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab. 1994;78(2):423–7.PubMedGoogle Scholar
  68. 68.
    Pearce EN, Bogazzi F, Martino E, Brogioni S, Pardini E, Pellegrini G, et al. The prevalence of elevated serum C-reactive protein levels in inflammatory and noninflammatory thyroid disease. Thyroid. 2003;13(7):643–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Eskes SA, Endert E, Fliers E, Geskus RB, Dullaart RP, Links TP, et al. Treatment of amiodarone-induced thyrotoxicosis type 2: a randomized clinical trial. J Clin Endocrinol Metab. 2012;97(2):499–506.PubMedCrossRefGoogle Scholar
  70. 70.
    Bogazzi F, Bartalena L, Tomisti L, Rossi G, Brogioni S, Martino E. Continuation of amiodarone delays restoration of euthyroidism in patients with type 2 amiodarone-induced thyrotoxicosis treated with prednisone: a pilot study. J Clin Endocrinol Metab. 2011;96(11):3374–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Albino CC, Paz-Filho G, Graf H. Recombinant human TSH as an adjuvant to radioiodine for the treatment of type 1 amiodarone-induced thyrotoxicosis (AIT). Clin Endocrinol. 2009;70(5):810–1.CrossRefGoogle Scholar
  72. 72.
    Bogazzi F, Tomisti L, Ceccarelli C, Martino E. Recombinant human TSH as an adjuvant to radioiodine for the treatment of type 1 amiodarone-induced thyrotoxicosis: a cautionary note. Clin Endocrinol. 2010;72(1):133–4.CrossRefGoogle Scholar
  73. 73.
    Maqdasy S, Batisse-Lignier M, Auclair C, Desbiez F, Citron B, Thieblot P, et al. Amiodarone-induced thyrotoxicosis recurrence after amiodarone reintroduction. Am J Cardiol. 2016;117(7):1112–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Bogazzi F, Tomisti L, Rossi G, Dell’Unto E, Pepe P, Bartalena L, et al. Glucocorticoids are preferable to thionamides as first-line treatment for amiodarone-induced thyrotoxicosis due to destructive thyroiditis: a matched retrospective cohort study. J Clin Endocrinol Metab. 2009;94(10):3757–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Bogazzi F, Bartalena L, Cosci C, Brogioni S, Dell’Unto E, Grasso L, et al. Treatment of type II amiodarone-induced thyrotoxicosis by either iopanoic acid or glucocorticoids: a prospective, randomized study. J Clin Endocrinol Metab. 2003;88(5):1999–2002.PubMedCrossRefGoogle Scholar
  76. 76.
    Dickstein G, Shechner C, Adawi F, Kaplan J, Baron E, Ish-Shalom S. Lithium treatment in amiodarone-induced thyrotoxicosis. Am J Med. 1997;102(5):454–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Bogazzi F, Bartalena L, Tomisti L, Rossi G, Tanda ML, Dell'Unto E, et al. Glucocorticoid response in amiodarone-induced thyrotoxicosis resulting from destructive thyroiditis is predicted by thyroid volume and serum free thyroid hormone concentrations. J Clin Endocrinol Metab. 2007;92(2):556–62.PubMedCrossRefGoogle Scholar
  78. 78.
    Bogazzi F, Dell’Unto E, Tanda ML, Tomisti L, Cosci C, Aghini-Lombardi F, et al. Long-term outcome of thyroid function after amiodarone-induced thyrotoxicosis, as compared to subacute thyroiditis. J Endocrinol Invest. 2006;29(8):694–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Vanderpump MP. Thyroid gland: use of glucocorticoids in amiodarone-induced thyrotoxicosis. Nat Rev Endocrinol. 2009;5(12):650–1.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhu L, Zainudin SB, Kaushik M, Khor LY, Chng CL. Plasma exchange in the treatment of thyroid storm secondary to type II amiodarone-induced thyrotoxicosis. Endocrinol Diabetes Metab Case Rep. 2016;2016:160039.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Tomisti L, Materazzi G, Bartalena L, Rossi G, Marchello A, Moretti M, et al. Total thyroidectomy in patients with amiodarone-induced thyrotoxicosis and severe left ventricular systolic dysfunction. J Clin Endocrinol Metab. 2012;97(10):3515–21.PubMedCrossRefGoogle Scholar
  82. 82.
    Pierret C, Tourtier JP, Pons Y, Merat S, Duverger V, Perrier E. Total thyroidectomy for amiodarone-associated thyrotoxicosis: should surgery always be delayed for pre-operative medical preparation? J Laryngol Otol. 2012;126(7):701–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Kaderli RM, Fahrner R, Christ ER, Stettler C, Fuhrer J, Martinelli M, et al. Total thyroidectomy for amiodarone-induced thyrotoxicosis in the hyperthyroid state. Exp Clin Endocrinol Diabetes. 2016;124(1):45–8.PubMedGoogle Scholar
  84. 84.
    Houghton SG, Farley DR, Brennan MD, van Heerden JA, Thompson GB, Grant CS. Surgical management of amiodarone-associated thyrotoxicosis: Mayo Clinic experience. World J Surg. 2004;28(11):1083–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Gough J, Gough IR. Total thyroidectomy for amiodarone-associated thyrotoxicosis in patients with severe cardiac disease. World J Surg. 2006;30(11):1957–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Hamoir E, Meurisse M, Defechereux T, Joris J, Vivario J, Hennen G. Surgical management of amiodarone-associated thyrotoxicosis: too risky or too effective? World J Surg. 1998;22(6):537–42; discussion 42–3.PubMedGoogle Scholar
  87. 87.
    Bogazzi F, Aghini-Lombardi F, Cosci C, Lupi I, Santini F, Tanda ML, et al. Iopanoic acid rapidly controls type I amiodarone-induced thyrotoxicosis prior to thyroidectomy. J Endocrinol Invest. 2002;25(2):176–80.PubMedCrossRefGoogle Scholar
  88. 88.
    Bogazzi F, Miccoli P, Berti P, Cosci C, Brogioni S, Aghini-Lombardi F, et al. Preparation with iopanoic acid rapidly controls thyrotoxicosis in patients with amiodarone-induced thyrotoxicosis before thyroidectomy. Surgery. 2002;132(6):1114–7; discussion 8.PubMedCrossRefGoogle Scholar
  89. 89.
    Langley RW, Burch HB. Perioperative management of the thyrotoxic patient. Endocrinol Metab Clin North Am. 2003;32(2):519–34.PubMedCrossRefGoogle Scholar
  90. 90.
    January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):e1–76.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Camm AJ, Lip GY, De Caterina R, Savelieva I, Atar D, Hohnloser SH, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation—developed with the special contribution of the European Heart Rhythm Association. Europace. 2012;14(10):1385–413.PubMedCrossRefGoogle Scholar
  92. 92.
    Tadros R, Nattel S, Andrade JG. Dronedarone: basic pharmacology and clinical use. Card Electrophysiol Clin. 2016;8(2):453–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Touboul P, Brugada J, Capucci A, Crijns HJ, Edvardsson N, Hohnloser SH. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur Heart J. 2003;24(16):1481–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Singh BN, Connolly SJ, Crijns HJ, Roy D, Kowey PR, Capucci A, et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N Engl J Med. 2007;357(10):987–99.PubMedCrossRefGoogle Scholar
  95. 95.
    Hohnloser SH, Crijns HJ, van Eickels M, Gaudin C, Page RL, Torp-Pedersen C, et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med. 2009;360(7):668–78.PubMedCrossRefGoogle Scholar
  96. 96.
    Davy JM, Herold M, Hoglund C, Timmermans A, Alings A, Radzik D, et al. Dronedarone for the control of ventricular rate in permanent atrial fibrillation: the Efficacy and safety of dRonedArone for the cOntrol of ventricular rate during atrial fibrillation (ERATO) study. Am Heart J. 2008;156(3):527.e1–9.CrossRefGoogle Scholar
  97. 97.
    Connolly SJ, Camm AJ, Halperin JL, Joyner C, Alings M, Amerena J, et al. Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med. 2011;365(24):2268–76.PubMedCrossRefGoogle Scholar
  98. 98.
    Le Heuzey JY, De Ferrari GM, Radzik D, Santini M, Zhu J, Davy JM. A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the DIONYSOS study. J Cardiovasc Electrophysiol. 2010;21(6):597–605.PubMedCrossRefGoogle Scholar
  99. 99.
    Van Beeren HC, Jong WM, Kaptein E, Visser TJ, Bakker O, Wiersinga WM. Dronerarone acts as a selective inhibitor of 3,5,3′-triiodothyronine binding to thyroid hormone receptor-alpha1: in vitro and in vivo evidence. Endocrinology. 2003;144(2):552–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Clinical and Experimental Medicine, Unit of EndocrinologyUniversity of PisaPisaItaly

Personalised recommendations