Review of Ototoxic Drugs and Treatment Strategies for Reducing Hearing Loss

  • Chaitanya Mamillapalli
  • Asmita Dhukhwa
  • Sandeep Sheth
  • Debashree Mukherjea
  • Leonard P. Rybak
  • Vickram RamkumarEmail author


A number of drugs currently in use clinically are known to produce hearing loss. These drugs are mainly therapeutic agents, which include aminoglycoside antibiotics and platinum-based anticancer drugs. Another class of agents that have recently been recognized as ototoxins are the cyclodextrins, which are used in the pharmaceutical industry to improve solubility, bioavailability, stability, and drug delivery. These drugs target cells in the cochlea, mostly hair cells, by increasing oxidative stress and induction of cochlear inflammatory processes and cell death, and generally produce permanent hearing loss. This review provides evidence of hearing loss associated with the administration of these drugs in experimental animals and humans, details the mechanisms underlying ototoxicity and provide potential strategies for reducing hearing loss. It is hoped that the information presented would prompt further studies into validating the efficacy of otoprotective agents described and provide the rationale for additional clinical studies in humans.


Hearing loss Cisplatin Aminoglycosides Cyclodextrins Clinical trials Oxidative stress Antioxidants Inflammation DNA repair 



The authors would like to acknowledge funding from NIH grants RO1-CA166907 and RO1-DC016835 (to V.R.) and RO1-DC002396 (to L.P.R.), which support studies from the authors’ laboratories described in this review.


  1. 1.
    Schuknecht HF, Kimura RS, Naufal PM (1973) The pathology of sudden deafness. Acta Otolaryngol 76:75–97CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chardin S, Romand R (1995) Regeneration and mammalian auditory hair cells. Science 267:707–711CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Groves AK (2010) The challenge of hair cell regeneration. Exp Biol Med (Maywood) 235:434–446CrossRefGoogle Scholar
  4. 4.
    Moriyama-Gonda N, Igawa M, Shiina H, Urakami S, Shigeno K, Terashima M (2002) Modulation of heat-induced cell death in PC-3 prostate cancer cells by the antioxidant inhibitor diethyldithiocarbamate. BJU Int 90:317–325CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martelli L, Di Mario F, Botti P, Ragazzi E, Martelli M, Kelland L (2007) Accumulation, platinum-DNA adduct formation and cytotoxicity of cisplatin, oxaliplatin and satraplatin in sensitive and resistant human osteosarcoma cell lines, characterized by p53 wild-type status. Biochem Pharmacol 74:20–27CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM (2003) SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Therap 2:471–478Google Scholar
  7. 7.
    Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Arslan E, Orzan E, Santarelli R (1999) Global problem of drug-induced hearing loss. Ann N Y Acad Sci 884:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coradini PP, Cigana L, Selistre SG, Rosito LS, Brunetto AL (2007) Ototoxicity from cisplatin therapy in childhood cancer. J Pediatr Hematol Oncol 29:355–360CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Knight KR, Kraemer DF, Neuwelt EA (2005) Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol 23:8588–8596CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bisht M, Bist SS (2011) Ototoxicity: the hidden menace. Indian J Otolaryngol Head Neck Surg 63:255–259CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McKeage MJ (1995) Comparative adverse effect profiles of platinum drugs. Drug Saf 13:228–244CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rybak LP, Mukherjea D, Jajoo S, Ramkumar V (2009) Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J Exp Med 219:177–186CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2017) Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci 11:338CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    van den Berg JH, Beijnen JH, Balm AJ, Schellens JH (2006) Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat Rev 32:390–397CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK, McLachlin KM, Hall MD, Amable L, Cunningham LL (2017) Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun 8:1654CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Holzer AK, Katano K, Klomp LW, Howell SB (2004) Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 10:6744–6749CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM (2010) Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci 30:9500–9509CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Öhrvik H, Thiele DJ (2015) The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. J Trace Elem Med Biol 31:178–182CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ciarimboli G, Schlatter E (2005) Regulation of organic cation transport. Pflugers Arch 449:423–441CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sprowl JA, van Doorn L, Hu S, van Gerven L, de Bruijn P, Li L, Gibson AA, Mathijssen RH, Sparreboom A (2013) Conjunctive therapy of cisplatin with the OCT2 inhibitor cimetidine: influence on antitumor efficacy and systemic clearance. Clin Pharmacol Ther 94:585–592CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Binks SP, Dobrota M (1990) Kinetics and mechanism of uptake of platinum-based pharmaceuticals by the rat small intestine. Biochem Pharmacol 40:1329–1336CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RHJ, Wiemer EAC (2011) Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat 14:22–34CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Murai N, Kirkegaard M, Jarlebark L, Risling M, Suneson A, Ulfendahl M (2008) Activation of JNK in the inner ear following impulse noise exposure. J Neurotrauma 25:72–77CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kimitsuki T, Ohmori H (1993) Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Res 624:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thomas AJ, Hailey DW, Stawicki TM, Patricia W, Coffin AB, Rubel EW, Raible DW, Simon JA, Henry CO (2013) Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci 33:4405–4414CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Asai Y, Holt JR, Géléoc GSG (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. JARO: J Assoc Res Otolaryngol 11:27–37CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022–1027CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ta LE, Bieber AJ, Carlton SM, Loprinzi CL, Low PA, Windebank AJ (2010) Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol Pain 6:15–15CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stepanyan RS, Indzhykulian AA, Velez-Ortega AC, Boger ET, Steyger PS, Friedman TB, Frolenkov GI (2011) TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells. J Assoc Res Otolaryngol 12:729–740CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lian HY, Hu M, Liu CH, Yamauchi Y, Wu KC (2012) Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery. Chem Commun (Cambridge, England) 48:5151–5153CrossRefGoogle Scholar
  35. 35.
    Phan PA, Tadros SF, Kim Y, Birnbaumer L, Housley GD (2010) Developmental regulation of TRPC3 ion channel expression in the mouse cochlea. Histochem Cell Biol 133:437–448CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mukherjea D, Jajoo S, Whitworth C, Bunch JR, Turner JG, Rybak LP, Ramkumar V (2008) Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J Neurosci 28:13056–13065CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hafidi A, Dulon D (2004) Developmental expression of Ca(v)1.3 (alpha1d) calcium channels in the mouse inner ear. Brain Res Dev Brain Res 150:167–175PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lei D, Gao X, Perez P, Ohlemiller KK, Chen C-C, Campbell KP, Hood AY, Bao J (2011) Anti-epileptic drugs delay age-related loss of spiral ganglion neurons via T-type calcium channel. Hear Res 278:106–112CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Uemaetomari I, Tabuchi K, Nakamagoe M, Tanaka S, Murashita H, Hara A (2009) L-type voltage-gated calcium channel is involved in the pathogenesis of acoustic injury in the cochlea. Tohoku J Exp Med 218:41–47CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mohajjel Nayebi A, Sharifi H, Ramadzani M, Rezazadeh H (2012) Effect of acute and chronic administration of carbamazepine on Cisplatin-induced hyperalgesia in rats. Jundishapur J Nat Pharm Prod 7:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Muthuraman A, Singla SK, Peters A (2011) Exploring the potential of flunarizine for Cisplatin-induced painful uremic neuropathy in rats. Int Neurourol J 15:127–134CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kawasaki E, Hattori N, Miyamoto E, Yamashita T, Inagaki C (1999) Single-cell RT-PCR demonstrates expression of voltage-dependent chloride channels (ClC-1, ClC-2 and ClC-3) in outer hair cells of rat cochlea. Brain Res 838:166–170CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Oshima T, Ikeda K, Furukawa M, Takasaka T (1997) Expression of voltage-dependent chloride channels in the rat cochlea. Hear Res 103:63–68CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saito T, Zhang ZJ, Tokuriki M, Ohtsubo T, Noda I, Shibamori Y, Yamamoto T, Saito H (2001) Expression of multidrug resistance protein 1 (MRP1) in the rat cochlea with special reference to the blood-inner ear barrier. Brain Res 895:253–257CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Clerici WJ, Hensley K, DiMartino DL, Butterfield DA (1996) Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear Res 98:116–124CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kopke R, Staecker H, Lefebvre P, Malgrange B, Moonen G, Ruben RJ, Van de Water TR (1996) Effect of neurotrophic factors on the inner ear: clinical implications. Acta Otolaryngol 116:248–252CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Church MW, Kaltenbach JA, Blakley BW, Burgio DL (1995) The comparative effects of sodium thiosulfate, diethyldithiocarbamate, fosfomycin and WR-2721 on ameliorating cisplatin-induced ototoxicity. Hear Res 86:195–203CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rybak LP, Ravi R, Somani SM (1995) Mechanism of protection by diethyldithiocarbamate against cisplatin ototoxicity: antioxidant system. Fundam Appl Toxicol 26:293–300CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ravi R, Somani SM, Rybak LP (1995) Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacol Toxicol 76:386–394CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mukherjea D, Jajoo S, Sheehan K, Kaur T, Sheth S, Bunch J, Perro C, Rybak LP, Ramkumar V (2011) NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss. Antioxid Redox Signal 14:999–1010CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Cifuentes-Pagano ME, Meijles DN, Pagano PJ (2015) Nox inhibitors & therapies: rational design of peptidic and small molecule inhibitors. Curr Pharm Des 21:6023–6035CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rousset F, Carnesecchi S, Senn P, Krause KH (2015) Nox3-targeted therapies for inner ear pathologies. Curr Pharm Des 21:5977–5987CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cheng G, Ritsick D, Lambeth JD (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem 279:34250–34255CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lynch ED, Gu R, Pierce C, Kil J (2005) Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear Res 201:81–89CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Seidman MD, Quirk WS, Nuttall AL, Schweitzer VG (1991) The protective effects of allopurinol and superoxide dismutase-polyethylene glycol on ischemic and reperfusion-induced cochlear damage. Otolaryngol Head Neck Surg 105:457–463CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tabuchi K, Tsuji S, Ito Z, Hara A, Kusakari J (2001) Does xanthine oxidase contribute to the hydroxyl radical generation in ischemia and reperfusion of the cochlea? Hear Res 153:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Li G, Liu W, Frenz D (2006) Cisplatin ototoxicity to the rat inner ear: a role for HMG1 and iNOS. Neurotoxicology 27:22–30CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Watanabe K, Inai S, Jinnouchi K, Bada S, Hess A, Michel O, Yagi T (2002) Nuclear-factor kappa B (NF-kappa B)-inducible nitric oxide synthase (iNOS/NOS II) pathway damages the stria vascularis in cisplatin-treated mice. Anticancer Res 22:4081–4085PubMedPubMedCentralGoogle Scholar
  60. 60.
    Jamesdaniel S, Ding D, Kermany MH, Davidson BA, Knight PR 3rd, Salvi R, Coling DE (2008) Proteomic analysis of the balance between survival and cell death responses in cisplatin-mediated ototoxicity. J Proteome Res 7:3516–3524CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Riga MG, Chelis L, Kakolyris S, Papadopoulos S, Stathakidou S, Chamalidou E, Xenidis N, Amarantidis K, Dimopoulos P, Danielides V (2013) Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: a feasible method with promising efficacy. Am J Clin Oncol 36:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Podewski E, Poli V, Schneider MD, Schulz R, Park JK, Wollert KC, Drexler H (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Usami S, Hjelle OP, Ottersen OP (1996) Differential cellular distribution of glutathione—an endogenous antioxidant—in the guinea pig inner ear. Brain Res 743:337–340CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    el Barbary A, Altschuler RA, Schacht J (1993) Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yao X, Rarey KE (1996) Detection and regulation of Cu/Zn-SOD and Mn-SOD in rat cochlear tissues. Hear Res 96:199–203CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lai MT, Ohmichi T, Egusa K, Okada S, Masuda Y (1996) Immunohistochemical localization of manganese superoxide dismutase in the rat cochlea. Eur Arch Otorhinolaryngol 253:273–277CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pierson MG, Gray BH (1982) Superoxide dismutase activity in the cochlea. Hear Res 6:141–151CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mukherjea D, Whitworth CA, Nandish S, Dunaway GA, Rybak LP, Ramkumar V (2006) Expression of the kidney injury molecule 1 in the rat cochlea and induction by cisplatin. Neuroscience 139:733–740CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Cunningham LL, Brandon CS (2006) Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J Assoc Res Otolaryngol: JARO 7:299–307CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim H-J, So H-S, Lee J-H, Lee J-H, Park C, Park S-Y, Kim Y-H, Youn M-J, Kim S-J, Chung S-Y, Lee K-M, Park R (2006) Heme oxygenase-1 attenuates the cisplatin-induced apoptosis of auditory cells via down-regulation of reactive oxygen species generation. Free Radic Biol Med 40:1810–1819CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    So HS, Kim HJ, Lee JH, Lee JH, Park SY, Park C, Kim YH, Kim JK, Lee KM, Kim KS, Chung SY, Jang WC, Moon SK, Chung HT, Park RK (2006) Flunarizine induces Nrf2-mediated transcriptional activation of heme oxygenase-1 in protection of auditory cells from cisplatin. Cell Death Differ 13:1763–1775CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Long DF, Repta AJ (1981) Cisplatin: chemistry, distribution and biotransformation. Biopharm Drug Dispos 2:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Benkafadar N, Menardo J, Bourien J, Nouvian R, François F, Decaudin D, Maiorano D, Puel J-L, Wang J (2017) Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol Med 9:7–26CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang J, Ladrech S, Pujol R, Brabet P, Van De Water TR, Puel JL (2004) Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64:9217–9224CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Watanabe K, Inai S, Jinnouchi K, Baba S, Yagi T (2003) Expression of caspase-activated deoxyribonuclease (CAD) and caspase 3 (CPP32) in the cochlea of cisplatin (CDDP)-treated guinea pigs. Auris Nasus Larynx 30:219–225CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Previati M, Lanzoni I, Astolfi L, Fagioli F, Vecchiati G, Pagnoni A, Martini A, Capitani S (2007) Cisplatin cytotoxicity in organ of corti-derived immortalized cells. J Cell Biochem 101:1185–1197CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Borse V, Al Aameri RFH, Sheehan K, Sheth S, Kaur T, Mukherjea D, Tupal S, Lowy M, Ghosh S, Dhukhwa A, Bhatta P, Rybak LP, Ramkumar V (2017) Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis 8:e2921CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Devarajan P, Savoca M, Castaneda MP, Park MS, Esteban-Cruciani N, Kalinec G, Kalinec F (2002) Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res 174:45–54CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    So H, Kim H, Lee JH, Park C, Kim Y, Kim E, Kim JK, Yun KJ, Lee KM, Lee HY, Moon SK, Lim DJ, Park R (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8:338–355CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chung WH, Boo SH, Chung MK, Lee HS, Cho YS, Hong SH (2008) Proapoptotic effects of NF-kappaB on cisplatin-induced cell death in auditory cell line. Acta Otolaryngol 128:1063–1070CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bortner CD, Cidlowski JA (1999) Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 274:21953–21962CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Boonstra A, van Oudenaren A, Baert M, Leenen PJM, Savelkoul HFJ, van Steeg H, van der Horst GTJ, Hoeijmakers JHJ, Garssen J (2001) Differential ultraviolet-B-induced immunomodulation in XPA, XPC, and CSB DNA repair-deficient mice. J Investig Dermatol 117:141–146CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ferry KV, Hamilton TC, Johnson SW (2000) Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochem Pharmacol 60:1305–1313CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tornaletti S, Patrick SM, Turchi JJ, Hanawalt PC (2003) Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem 278:35791–35797CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Guthrie OW, Li-Korotky H-S, Durrant JD, Balaban C (2008) Cisplatin induces cytoplasmic to nuclear translocation of nucleotide excision repair factors among spiral ganglion neurons. Hear Res 239:79–91CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Caronia D, Patino-Garcia A, Milne RL, Zalacain-Diez M, Pita G, Alonso MR, Moreno LT, Sierrasesumaga-Ariznabarreta L, Benitez J, Gonzalez-Neira A (2009) Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J 9:347–353CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120:191–205CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Cheng AG, Cunningham LL, Rubel EW (2005) Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg 13:343–348CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Tserga E, Nandwani T, Edvall NK, Bulla J, Patel P, Canlon B, Cederroth CR, Baguley DM (2019) The genetic vulnerability to cisplatin ototoxicity: a systematic review. Sci Rep 9:3455CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chen HH, Kuo MT (2010) Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy. Met Based Drugs 2010:430939CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Peters U, Preisler-Adams S, Hebeisen A, Hahn M, Seifert E, Lanvers C, Heinecke A, Horst J, Jurgens H, Lamprecht-Dinnesen A (2000) Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anti-Cancer Drugs 11:639–643CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Oldenburg J, Kraggerud SM, Cvancarova M, Lothe RA, Fossa SD (2007) Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 25:708–714CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Christensen EI, Gliemann J, Moestrup SK (1992) Renal tubule gp330 is a calcium binding receptor for endocytic uptake of protein. J Histochem Cytochem 40:1481–1490CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Hosokawa S, Hosokawa K, Ishiyama G, Ishiyama A, Lopez IA (2018) Immunohistochemical localization of megalin and cubilin in the human inner ear. Brain Res 1701:153–160CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Tauris J, Christensen EI, Nykjaer A, Jacobsen C, Petersen CM, Ovesen T (2009) Cubilin and megalin co-localize in the neonatal inner ear. Audiol Neurootol 14:267–278CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Konig O, Ruttiger L, Muller M, Zimmermann U, Erdmann B, Kalbacher H, Gross M, Knipper M (2008) Estrogen and the inner ear: megalin knockout mice suffer progressive hearing loss. FASEB J 22:410–417CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Li Q, Lei F, Tang Y, Pan JS, Tong Q, Sun Y, Sheikh-Hamad D (2018) Megalin mediates plasma membrane to mitochondria cross-talk and regulates mitochondrial metabolism. Cell Mol Life Sci 75:4021–4040CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZ (2014) Characterization of transcriptomes of cochlear inner and outer hair cells. J Neurosci 34:11085–11095CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Degl’Innocenti D, Marzocchini R, Rosati F, Cellini E, Raugei G, Ramponi G (1999) Acylphosphatase expression during macrophage differentiation and activation of U-937 cell line. Biochimie 81:1031–1035CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Drogemoller BI, Brooks B, Critchley C, Monzon JG, Wright GEB, Liu G, Renouf DJ, Kollmannsberger CK, Bedard PL, Hayden MR, Gelmon KA, Carleton BC, Ross CJD (2018) Further investigation of the role of ACYP2 and WFS1 pharmacogenomic variants in the development of cisplatin-induced ototoxicity in testicular cancer patients. Clin Cancer Res 24:1866–1871CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Vos HI, Guchelaar HJ, Gelderblom H, de Bont ES, Kremer LC, Naber AM, Hakobjan MH, van der Graaf WT, Coenen MJ, te Loo DM (2016) Replication of a genetic variant in ACYP2 associated with cisplatin-induced hearing loss in patients with osteosarcoma. Pharmacogenet Genomics 26:243–247CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Xu H, Robinson GW, Huang J, Lim JY, Zhang H, Bass JK, Broniscer A, Chintagumpala M, Bartels U, Gururangan S, Hassall T, Fisher M, Cohn R, Yamashita T, Teitz T, Zuo J, Onar-Thomas A, Gajjar A, Stewart CF, Yang JJ (2015) Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat Genet 47:263–266CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Bhavsar AP, Gunaretnam EP, Li Y, Hasbullah JS, Carleton BC, Ross CJ (2017) Pharmacogenetic variants in TPMT alter cellular responses to cisplatin in inner ear cell lines. PLoS One 12:e0175711CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Asadov C, Aliyeva G, Mustafayeva K (2017) Thiopurine S-methyltransferase as a pharmacogenetic biomarker: significance of testing and review of major methods. Cardiovasc Hematol Agents Med Chem 15:23–30CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Pussegoda K, Ross CJ, Visscher H, Yazdanpanah M, Brooks B, Rassekh SR, Zada YF, Dube MP, Carleton BC, Hayden MR (2013) Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharmacol Ther 94:243–251CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ross CJ, Katzov-Eckert H, Dube MP, Brooks B, Rassekh SR, Barhdadi A, Feroz-Zada Y, Visscher H, Brown AM, Rieder MJ, Rogers PC, Phillips MS, Carleton BC, Hayden MR (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41:1345–1349CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Du X, Schwander M, Moresco EM, Viviani P, Haller C, Hildebrand MS, Pak K, Tarantino L, Roberts A, Richardson H, Koob G, Najmabadi H, Ryan AF, Smith RJ, Muller U, Beutler B (2008) A catechol-O-methyltransferase that is essential for auditory function in mice and humans. Proc Natl Acad Sci U S A 105:14609–14614CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Thomas Dickey D, Muldoon LL, Kraemer DF, Neuwelt EA (2004) Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear Res 193:25–30CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Choe WT, Chinosornvatana N, Chang KW (2004) Prevention of cisplatin ototoxicity using transtympanic N-acetylcysteine and lactate. Otol Neurotol 25:910–915CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Otto WC, Brown RD, Gage-White L, Kupetz S, Anniko M, Penny JE, Henley CM (1988) Effects of cisplatin and thiosulfate upon auditory brainstem responses of guinea pigs. Hear Res 35:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Church MW, Blakley BW, Burgio DL, Gupta AK (2004) WR-2721 (Amifostine) ameliorates cisplatin-induced hearing loss but causes neurotoxicity in hamsters: dose-dependent effects. J Assoc Res Otolaryngol 5:227–237CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Campbell KC, Rybak LP, Meech RP, Hughes L (1996) D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res 102:90–98CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Campbell KC, Meech RP, Rybak LP, Hughes LF (2003) The effect of D-methionine on cochlear oxidative state with and without cisplatin administration: mechanisms of otoprotection. J Am Acad Audiol 14:144–156CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100:773–783CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Viallet NR, Blakley BB, Begleiter A, Leith MK (2006) Sodium thiosulphate impairs the cytotoxic effects of cisplatin on FADU cells in culture. J Otolaryngol 35:19–21CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J Pharmacol Exp Ther 312:424–431CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Ekborn A, Hansson J, Ehrsson H, Eksborg S, Wallin I, Wagenius G, Laurell G (2004) High-dose Cisplatin with amifostine: ototoxicity and pharmacokinetics. Laryngoscope 114:1660–1667CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    DeVries TA, Kalkofen RL, Matassa AA, Reyland ME (2004) Protein kinase Cdelta regulates apoptosis via activation of STAT1. J Biol Chem 279:45603–45612CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Stephanou A, Scarabelli TM, Brar BK, Nakanishi Y, Matsumura M, Knight RA, Latchman DS (2001) Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J Biol Chem 276:28340–28347CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Stephanou A, Scarabelli TM, Townsend PA, Bell R, Yellon D, Knight RA, Latchman DS (2002) The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia/reperfusion-induced apoptosis in cardiac myocytes. FASEB J 16:1841–1843CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A (2004) STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279:5811–5820CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA, Latchman DS (2000) Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem 275:10002–10008CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Schmitt NC, Rubel EW, Nathanson NM (2009) Cisplatin-induced hair cell death requires STAT1 and is attenuated by epigallocatechin gallate. J Neurosci 29:3843–3851CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Levano S, Bodmer D (2015) Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis 6:e2019CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Stephanou A (2004) Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J Cell Mol Med 8:519–525CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V (2011) Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis 2:e180CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Keithley EM, Wang X, Barkdull GC (2008) Tumor necrosis factor alpha can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol 29:854–859CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Barry SP, Townsend PA, McCormick J, Knight RA, Scarabelli TM, Latchman DS, Stephanou A (2009) STAT3 deletion sensitizes cells to oxidative stress. Biochem Biophys Res Commun 385:324–329CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Barry SP, Townsend PA, Knight RA, Scarabelli TM, Latchman DS, Stephanou A (2010) STAT3 modulates the DNA damage response pathway. Int J Exp Pathol 91:506–514CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Snyder M, Huang XY, Zhang JJ (2008) Identification of novel direct Stat3 target genes for control of growth and differentiation. J Biol Chem 283:3791–3798CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Vlajkovic SM, Housley GD, Thorne PR (2009) Adenosine and the auditory system. Curr Neuropharmacol 7:246–256CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Ford MS, Maggirwar SB, Rybak LP, Whitworth C, Ramkumar V (1997) Expression and function of adenosine receptors in the chinchilla cochlea. Hear Res 105:130–140CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Kaur T, Borse V, Sheth S, Sheehan K, Ghosh S, Tupal S, Jajoo S, Mukherjea D, Rybak LP, Ramkumar V (2016) Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J Neurosci 36:3962–3977CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Jeong HJ, Kim SJ, Moon PD, Kim NH, Kim JS, Park RK, Kim MS, Park BR, Jeong S, Um JY, Kim HM, Hong SH (2007) Antiapoptotic mechanism of cannabinoid receptor 2 agonist on cisplatin-induced apoptosis in the HEI-OC1 auditory cell line. J Neurosci Res 85:896–905CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Martín-Saldaña S, Trinidad A, Ramil E, Sánchez-López AJ, Coronado MJ, Martínez-Martínez E, García JM, García-Berrocal JR, Ramírez-Camacho R (2016) Spontaneous cannabinoid receptor 2 (CB2) expression in the cochlea of adult albino rat and its up-regulation after cisplatin treatment. PLoS One 11:e0161954CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Herr DR, Reolo MJY, Peh YX, Wang W, Lee C-W, Rivera R, Paterson IC, Chun J (2016) Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: implications for otoprotective therapy. Sci Rep 6:24541CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Blair BG, Larson CA, Adams PL, Abada PB, Safaei R, Howell SB (2010) Regulation of copper transporter 2 expression by copper and cisplatin in human ovarian carcinoma cells. Mol Pharmacol 77:912–921CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Marshak T, Steiner M, Kaminer M, Levy L, Shupak A (2014) Prevention of cisplatin-induced hearing loss by intratympanic dexamethasone: a randomized controlled study. Otolaryngol Head Neck Surg 150:983–990CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Dias MA, Sampaio AL, Venosa AR, Meneses Ede A, Oliveira CA (2015) The chemopreventive effect of Ginkgo biloba extract 761 against cisplatin ototoxicity: a pilot study. Int Tinnitus J 19:12–19CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Crabb SJ, Martin K, Abab J, Ratcliffe I, Thornton R, Lineton B, Ellis M, Moody R, Stanton L, Galanopoulou A, Maishman T, Geldart T, Bayne M, Davies J, Lamb C, Popat S, Joffe JK, Nutting C, Chester J, Hartley A, Thomas G, Ottensmeier C, Huddart R, King E (2017) COAST (Cisplatin ototoxicity attenuated by aspirin trial): a phase II double-blind, randomised controlled trial to establish if aspirin reduces cisplatin induced hearing-loss. Eur J Cancer 87:75–83CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Rolland V, Meyer F, Guitton MJ, Bussieres R, Philippon D, Bairati I, Leclerc M, Cote M (2019) A randomized controlled trial to test the efficacy of trans-tympanic injections of a sodium thiosulfate gel to prevent cisplatin-induced ototoxicity in patients with head and neck cancer. J Otolaryngol Head Neck Surg 48:4CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Freyer DR, Chen L, Krailo MD, Knight K, Villaluna D, Bliss B, Pollock BH, Ramdas J, Lange B, Van Hoff D, VanSoelen ML, Wiernikowski J, Neuwelt EA, Sung L (2017) Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol 18:63–74CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Zuur CL, Simis YJ, Lansdaal PE, Hart AA, Schornagel JH, Dreschler WA, Rasch CR, Balm AJ (2007) Ototoxicity in a randomized phase III trial of intra-arterial compared with intravenous cisplatin chemoradiation in patients with locally advanced head and neck cancer. J Clin Oncol 25:3759–3765CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Ishikawa E, Sugimoto H, Hatano M, Nakanishi Y, Tsuji A, Endo K, Kondo S, Wakisaka N, Murono S, Ito M, Yoshizaki T (2015) Protective effects of sodium thiosulfate for cisplatin-mediated ototoxicity in patients with head and neck cancer. Acta Otolaryngol 135:919–924CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Madasu R, Ruckenstein MJ, Leake F, Steere E, Robbins KT (1997) Ototoxic effects of supradose cisplatin with sodium thiosulfate neutralization in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 123:978–981CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Womack AM, Hayes-Jordan A, Pratihar R, Barringer DA, Hall JH Jr, Gidley PW, Lewin JS (2014) Evaluation of ototoxicity in patients treated with hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin and sodium thiosulfate. Ear Hear 35:e243–e247CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    van Rijswijk RE, Hoekman K, Burger CW, Verheijen RH, Vermorken JB (1997) Experience with intraperitoneal cisplatin and etoposide and i.v. sodium thiosulphate protection in ovarian cancer patients with either pathologically complete response or minimal residual disease. Ann Oncol 8:1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Sarafraz Z, Ahmadi A, Daneshi A (2018) Transtympanic injections of N-acetylcysteine and dexamethasone for prevention of cisplatin-induced ototoxicity: double blind randomized clinical trial. Int Tinnitus J 22:40–45CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Yoo J, Hamilton SJ, Angel D, Fung K, Franklin J, Parnes LS, Lewis D, Venkatesan V, Winquist E (2014) Cisplatin otoprotection using transtympanic L-N-acetylcysteine: a pilot randomized study in head and neck cancer patients. Laryngoscope 124:E87–E94CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Gurney JG, Bass JK, Onar-Thomas A, Huang J, Chintagumpala M, Bouffet E, Hassall T, Gururangan S, Heath JA, Kellie S, Cohn R, Fisher MJ, Panandiker AP, Merchant TE, Srinivasan A, Wetmore C, Qaddoumi I, Stewart CF, Armstrong GT, Broniscer A, Gajjar A (2014) Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro-Oncology 16:848–855CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Kemp G, Rose P, Lurain J, Berman M, Manetta A, Roullet B, Homesley H, Belpomme D, Glick J (1996) Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 14:2101–2112CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Planting AS, Catimel G, de Mulder PH, de Graeff A, Hoppener F, Verweij J, Oster W, Vermorken JB (1999) Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. EORTC Head and Neck Cooperative Group. Ann Oncol 10:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Fisher MJ, Lange BJ, Needle MN, Janss AJ, Shu HK, Adamson PC, Phillips PC (2004) Amifostine for children with medulloblastoma treated with cisplatin-based chemotherapy. Pediatr Blood Cancer 43:780–784CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Marina N, Chang KW, Malogolowkin M, London WB, Frazier AL, Womer RB, Rescorla F, Billmire DF, Davis MM, Perlman EJ, Giller R, Lauer SJ, Olson TA, Group Children’s Oncology (2005) Amifostine does not protect against the ototoxicity of high-dose cisplatin combined with etoposide and bleomycin in pediatric germ-cell tumors: a Children’s Oncology Group Study. Cancer 104:841–847CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Katzenstein HM, Chang KW, Krailo M, Chen Z, Finegold MJ, Rowland J, Reynolds M, Pappo A, London WB, Malogolowkin M, Group Children’s Oncology (2009) Amifostine does not prevent platinum-induced hearing loss associated with the treatment of children with hepatoblastoma: a report of the Intergroup Hepatoblastoma Study P9645 as a part of the Children’s Oncology Group. Cancer 115:5828–5835CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Prinja S, Singh G, Vashisth M, Arora T (2016) Protective role of calcium channel blocker flunarizine on cisplatin induced ototoxicity: a clinical study. Int J Contemp Med Res 3:1290–1292Google Scholar
  161. 161.
    Villani V, Zucchella C, Cristalli G, Galie E, Bianco F, Giannarelli D, Carpano S, Spriano G, Pace A (2016) Vitamin E neuroprotection against cisplatin ototoxicity: preliminary results from a randomized, placebo-controlled trial. Head Neck 38(Suppl 1):E2118–E2121CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH, Cleton FJ, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40:1713–1723CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    de Graaf TW, de Jong S, de Vries EG, Mulder NH (1997) Expression of proteins correlated with the unique cisplatin-sensitivity of testicular cancer. Anticancer Res 17:369–375PubMedPubMedCentralGoogle Scholar
  164. 164.
    Kikuchi Y, Miyauchi M, Kizawa I, Oomori K, Kato K (1986) Establishment of a cisplatin-resistant human ovarian cancer cell line. J Natl Cancer Inst 77:1181–1185PubMedPubMedCentralGoogle Scholar
  165. 165.
    von Eyben FE, Blaabjerg O, Madsen EL, Petersen PH, Smith-Sivertsen C, Gullberg B (1992) Serum lactate dehydrogenase isoenzyme 1 and tumour volume are indicators of response to treatment and predictors of prognosis in metastatic testicular germ cell tumours. Eur J Cancer 28:410–415CrossRefGoogle Scholar
  166. 166.
    Spector GJ, Carr C (1974) The electron transport system in the cochlear hair cell: the ultrastructural cytochemistry of respiratory enzymes in hair cell mitochondria of the guinea pig. Laryngoscope 84:1673–1706CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Haupt H, Scheibe F, Bergmann K (1983) [Total lactate dehydrogenase activity of perilymph, plasma and cerebrospinal fluid in unstressed and noise stressed guinea pigs]. Arch Otorhinolaryngol 238:77–85Google Scholar
  168. 168.
    Scheibe F, Haupt H, Rothe E, Hache U (1981) [Lactate and pyruvate concentrations in perilymph, blood, and cerebrospinal fluid of guinea pigs]. Arch Otorhinolaryngol 232:81–89Google Scholar
  169. 169.
    Hannemann J, Baumann K (1988) Inhibition of lactate-dehydrogenase by cisplatin and other platinum-compounds: enzyme leakage of LDH is not a suitable method to measure platinum-compound-induced kidney cell damage in vitro. Res Commun Chem Pathol Pharmacol 60:371–379PubMedPubMedCentralGoogle Scholar
  170. 170.
    Zhang JG, Lindup WE (1996) Differential effects of cisplatin on the production of NADH-dependent superoxide and the activity of antioxidant enzymes in rat renal cortical slices in vitro. Pharmacol Toxicol 79:191–198CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114:10940–10975CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Loftsson T, Hreinsdottir D, Masson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Conceicao J, Adeoye O, Cabral-Marques HM, Lobo JMS (2018) Cyclodextrins as drug carriers in pharmaceutical technology: the state of the art. Curr Pharm Des 24:1405–1433CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J (1989) Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem 186:17–22CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Gould S, Scott RC (2005) 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol 43:1451–1459CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86:147–162CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Otero-Espinar FJ, Luzardo-Alvarez A, Blanco-Mendez J (2010) Cyclodextrins: more than pharmaceutical excipients. Mini Rev Med Chem 10:715–725CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Hastings, C (2010) Request for intrathecal delivery of HPBCD for niemann pick Type C patients, Caroline Hastings, M.D. Principal Investigator Department of Pediatric Hematology Oncology Children’s Hospital & Research Center Oakland Submission Date to FDA.Google Scholar
  183. 183.
    Megías-Vericat JE, Company-Albir MJ, García-Robles AA, Poveda JL (2017) Use of 2-hydroxypropyl-beta-cyclodextrin for Niemann-Pick type C disease. In: Dhingra N, Arora P (eds) Cyclodextrin—a versatile ingredient. IntechOpen, LondonGoogle Scholar
  184. 184.
    Crumling MA, Liu L, Thomas PV, Benson J, Kanicki A, Kabara L, Halsey K, Dolan D, Duncan RK (2012) Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl-beta-cyclodextrin. PLoS One 7:e53280CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Ory DS, Ottinger EA, Farhat NY, King KA, Jiang X, Weissfeld L, Berry-Kravis E, Davidson CD, Bianconi S, Keener LA, Rao R, Soldatos A, Sidhu R, Walters KA, Xu X, Thurm A, Solomon B, Pavan WJ, Machielse BN, Kao M, Silber SA, McKew JC, Brewer CC, Vite CH, Walkley SU, Austin CP, Porter FD (2017) Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet 390:1758–1768CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Ward S, O’Donnell P, Fernandez S, Vite CH (2010) 2-Hydroxypropyl-beta-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann-Pick type C disease. Pediatr Res 68:52–56CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Cronin S, Lin A, Thompson K, Hoenerhoff M, Duncan RK (2015) Hearing loss and otopathology following systemic and intracerebroventricular delivery of 2-hydroxypropyl-beta-cyclodextrin. J Assoc Res Otolaryngol 16:599–611CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Nakashima T, Sone M, Teranishi M, Yoshida T, Terasaki H, Kondo M, Yasuma T, Wakabayashi T, Nagatani T, Naganawa S (2012) A perspective from magnetic resonance imaging findings of the inner ear: relationships among cerebrospinal, ocular and inner ear fluids. Auris Nasus Larynx 39:345–355CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Nguyen T-VN, Brownell WE (1998) Contribution of membrane cholesterol to outer hair cell lateral wall stiffness. Otolaryngol Head Neck Surg 119:14–20CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Thomas PV, Cheng AL, Colby CC, Liu L, Patel CK, Josephs L, Duncan RK (2014) Localization and proteomic characterization of cholesterol-rich membrane microdomains in the inner ear. J Proteome 103:178–193CrossRefGoogle Scholar
  191. 191.
    Kamar RI, Organ-Darling LE, Raphael RM (2012) Membrane cholesterol strongly influences confined diffusion of prestin. Biophys J 103:1627–1636CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Rajagopalan L, Organ-Darling LE, Liu H, Davidson AL, Raphael RM, Brownell WE, Pereira FA (2010) Glycosylation regulates prestin cellular activity. J Assoc Res Otolaryngol 11:39–51CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Muallem D, Ashmore J (2006) An anion antiporter model of prestin, the outer hair cell motor protein. Biophys J 90:4035–4045CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Cheatham MA, Edge RM, Homma K, Leserman EL, Dallos P, Zheng J (2015) Prestin-dependence of outer hair cell survival and partial rescue of outer hair cell loss in PrestinV499G/Y501H knockin mice. PLoS One 10:e0145428CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Dallos P (2008) Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol 18:370–376CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Wu X, Gao J, Guo Y, Zuo J (2004) Hearing threshold elevation precedes hair-cell loss in prestin knockout mice. Brain Res Mol Brain Res 126:30–37CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Takahashi S, Homma K, Zhou Y, Nishimura S, Duan C, Chen J, Ahmad A, Cheatham MA, Zheng J (2016) Susceptibility of outer hair cells to cholesterol chelator 2-hydroxypropyl-beta-cyclodextrine is prestin-dependent. Sci Rep 6:21973CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Canis M, Schmid J, Olzowy B, Jahn K, Strupp M, Berghaus A, Suckfuell M (2009) The influence of cholesterol on the motility of cochlear outer hair cells and the motor protein prestin. Acta Otolaryngol 129:929–934CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Rajagopalan L, Greeson JN, Xia A, Liu H, Sturm A, Raphael RM, Davidson AL, Oghalai JS, Pereira FA, Brownell WE (2007) Tuning of the outer hair cell motor by membrane cholesterol. J Biol Chem 282:36659–36670CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Brownell WE, Jacob S, Hakizimana P, Ulfendahl M, Fridberger A (2011) Decreasing outer hair cell membrane cholesterol increases cochlear electromechanics. AIP Conf Proc 1403:148–153Google Scholar
  203. 203.
    Sfondouris J, Rajagopalan L, Pereira FA, Brownell WE (2008) Membrane composition modulates prestin-associated charge movement. J Biol Chem 283:22473–22481CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Zhou Y, Takahashi S, Homma K, Duan C, Zheng J, Cheatham MA, Zheng J (2018) The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity. Acta Neuropathol Commun 6:98CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Lee MY, Kabara LL, Swiderski DL, Raphael Y, Duncan RK, Kim YH (2019) ROS scavenger, ebselen, has no preventive effect in new hearing loss model using a cholesterol-chelating agent. J Audiol Otol 23:69–75CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Ziolkowski W, Szkatula M, Nurczyk A, Wakabayashi T, Kaczor JJ, Olek RA, Knap N, Antosiewicz J, Wieckowski MR, Wozniak M (2010) Methyl-beta-cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Lett 584:4606–4610CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Lichtenhan JT, Hirose K, Buchman CA, Duncan RK, Salt AN (2017) Direct administration of 2-hydroxypropyl-beta-cyclodextrin into guinea pig cochleae: effects on physiological and histological measurements. PLoS One 12:e0175236CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Purcell EK, Liu L, Thomas PV, Duncan RK (2011) Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells. PLoS One 6:e26289CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Kumana CR, Yuen KY (1994) Parenteral aminoglycoside therapy. Selection, administration and monitoring. Drugs 47:902–913CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–1371CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43:727–737CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Hinshaw HC, Feldman WH, Pfuetze KH (1946) Treatment of tuberculosis with streptomycin; a summary of observations on one hundred cases. J Am Med Assoc 132:778–782CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Des 13:119–126CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Fausti SA, Henry JA, Schaffer HI, Olson DJ, Frey RH, McDonald WJ (1992) High-frequency audiometric monitoring for early detection of aminoglycoside ototoxicity. J Infect Dis 165:1026–1032CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Kusunoki T, Cureoglu S, Schachern PA, Sampaio A, Fukushima H, Oktay MF, Paparella MM (2004) Effects of aminoglycoside administration on cochlear elements in human temporal bones. Auris Nasus Larynx 31:383–388CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Petersen L, Rogers C (2015) Aminoglycoside-induced hearing deficits—a review of cochlear ototoxicity. S Afr Fam Pract 57:77–82CrossRefGoogle Scholar
  217. 217.
    Lerner SA, Matz GJ (1979) Suggestions for monitoring patients during treatment with aminoglycoside antibiotics. Otolaryngol Head Neck Surg 87:222–228CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Moore RD, Smith CR, Lietman PS (1984) Risk factors for the development of auditory toxicity in patients receiving aminoglycosides. J Infect Dis 149:23–30CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Fee WE Jr (1980) Aminoglycoside ototoxicity in the human. Laryngoscope 90:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Fausti SA, Frey RH, Henry JA, Olson DJ, Schaffer HI (1993) High-frequency testing techniques and instrumentation for early detection of ototoxicity. J Rehabil Res Dev 30:333–341PubMedPubMedCentralGoogle Scholar
  221. 221.
    Hotz MA, Harris FP, Probst R (1994) Otoacoustic emissions: an approach for monitoring aminoglycoside-induced ototoxicity. Laryngoscope 104:1130–1134CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    de Jager P, van Altena R (2002) Hearing loss and nephrotoxicity in long-term aminoglycoside treatment in patients with tuberculosis. Int J Tuberc Lung Dis 6:622–627PubMedPubMedCentralGoogle Scholar
  223. 223.
    Duggal P, Sarkar M (2007) Audiologic monitoring of multi-drug resistant tuberculosis patients on aminoglycoside treatment with long term follow-up. BMC Ear Nose Throat Disord 7:5CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Sturdy A, Goodman A, Jose RJ, Loyse A, O’Donoghue M, Kon OM, Dedicoat MJ, Harrison TS, John L, Lipman M, Cooke GS (2011) Multidrug-resistant tuberculosis (MDR-TB) treatment in the UK: a study of injectable use and toxicity in practice. J Antimicrob Chemother 66:1815–1820CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Al-Malky G, Suri R, Dawson SJ, Sirimanna T, Kemp D (2011) Aminoglycoside antibiotics cochleotoxicity in paediatric cystic fibrosis (CF) patients: a study using extended high-frequency audiometry and distortion product otoacoustic emissions. Int J Audiol 50:112–122CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Ramma L, Ibekwe TS (2012) Cochleo-vestibular clinical findings among drug resistant tuberculosis patients on therapy—a pilot study. Int Arch Med 5:3CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Harris T, Bardien S, Schaaf HS, Petersen L, De Jong G, Fagan JJ (2012) Aminoglycoside-induced hearing loss in HIV-positive and HIV-negative multidrug-resistant tuberculosis patients. S Afr Med J 102:363–366CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Rybak LP, Schacht J (2008) Drug-induced hearing loss. Springer, New YorkCrossRefGoogle Scholar
  229. 229.
    Meyerhoff WL, Maale GE, Yellin W, Roland PS (1989) Audiologic threshold monitoring of patients receiving ototoxic drugs. Preliminary report. Ann Otol Rhinol Laryngol 98:950–954CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Bath AP, Walsh RM, Bance ML, Rutka JA (1999) Ototoxicity of topical gentamicin preparations. Laryngoscope 109:1088–1093CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Saleh P, Abbasalizadeh S, Rezaeian S, Naghavi-Behzad M, Piri R, Pourfeizi HH (2016) Gentamicin-mediated ototoxicity and nephrotoxicity: a clinical trial study. Niger Med J 57:347–352CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Stankowicz MS, Ibrahim J, Brown DL (2015) Once-daily aminoglycoside dosing: an update on current literature. Am J Health Syst Pharm 72:1357–1364CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Hamasaki K, Rando RR (1997) Specific binding of aminoglycosides to a human rRNA construct based on a DNA polymorphism which causes aminoglycoside-induced deafness. Biochemistry 36:12323–12328CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG (2017) Towards the prevention of aminoglycoside-related hearing loss. Front Cell Neurosci 11:325CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Usami S, Abe S, Shinkawa H, Kimberling WJ (1998) Sensorineural hearing loss caused by mitochondrial DNA mutations: special reference to the A1555G mutation. J Commun Disord 31:423–434; quiz 34–5CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Hailey DW, Esterberg R, Linbo TH, Rubel EW, Raible DW (2017) Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. J Clin Invest 127:472–486CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Hashino E, Shero M, Salvi RJ (1997) Lysosomal targeting and accumulation of aminoglycoside antibiotics in sensory hair cells. Brain Res 777:75–85CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Jiang M, Karasawa T, Steyger PS (2017) Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci 11:308CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Dai CF, Mangiardi D, Cotanche DA, Steyger PS (2006) Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res 213:64–78CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Zheng J, Dai C, Steyger PS, Kim Y, Vass Z, Ren T, Nuttall AL (2003) Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti. J Neurophysiol 90:444–455CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Vu AA, Nadaraja GS, Huth ME, Luk L, Kim J, Chai R, Ricci AJ, Cheng AG (2013) Integrity and regeneration of mechanotransduction machinery regulate aminoglycoside entry and sensory cell death. PLoS One 8:e54794CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Lanvers-Kaminsky C, Ciarimboli G (2017) Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics 18:1683–1695CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Nguyen T, Jeyakumar A (2019) Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol 120:15–19CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D, Bai Y, Young WY, Guan MX (2004) Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet 74:139–152CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Gao Z, Chen Y, Guan MX (2017) Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otol 12:1–8CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Huang S, Xiang G, Kang D, Wang C, Kong Y, Zhang X, Liang S, Mitchelson K, Xing W, Dai P (2015) Rapid identification of aminoglycoside-induced deafness gene mutations using multiplex real-time polymerase chain reaction. Int J Pediatr Otorhinolaryngol 79:1067–1072CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    American Academy of Audiology (2009) Position statement and clinical practice guidelines. Ototoxicity monitoring, Audiology (2014). Available at: (Accessed: 21st April 2019)
  249. 249.
    Li H, Steyger PS (2009) Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics. Noise Health 11:26–32CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Campbell KCM, Le Prell CG (2018) Drug-induced ototoxicity: diagnosis and monitoring. Drug Saf 41:451–464CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Campbell KC, Meech RP, Klemens JJ, Gerberi MT, Dyrstad SS, Larsen DL, Mitchell DL, El-Azizi M, Verhulst SJ, Hughes LF (2007) Prevention of noise- and drug-induced hearing loss with D-methionine. Hear Res 226:92–103CrossRefGoogle Scholar
  252. 252.
    Kranzer K, Elamin WF, Cox H, Seddon JA, Ford N, Drobniewski F (2015) A systematic review and meta-analysis of the efficacy and safety of N-acetylcysteine in preventing aminoglycoside-induced ototoxicity: implications for the treatment of multidrug-resistant TB. Thorax 70:1070–1077CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Fetoni AR, Sergi B, Ferraresi A, Paludetti G, Troiani D (2004) alpha-Tocopherol protective effects on gentamicin ototoxicity: an experimental study. Int J Audiol 43:166–171CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Conlon BJ, Aran JM, Erre JP, Smith DW (1999) Attenuation of aminoglycoside-induced cochlear damage with the metabolic antioxidant alpha-lipoic acid. Hear Res 128:40–44CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Fetoni AR, Eramo SL, Rolesi R, Troiani D, Paludetti G (2012) Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model. Acta Otorhinolaryngol Ital 32:103–110PubMedPubMedCentralGoogle Scholar
  256. 256.
    Jung HW, Chang SO, Kim CS, Rhee CS, Lim DH (1998) Effects of Ginkgo biloba extract on the cochlear damage induced by local gentamicin installation in guinea pigs. J Korean Med Sci 13:525–528CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Feldman L, Efrati S, Eviatar E, Abramsohn R, Yarovoy I, Gersch E, Averbukh Z, Weissgarten J (2007) Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int 72:359–363CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Sha SH, Qiu JH, Schacht J (2006) Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med 354:1856–1857CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Hammill TL, Campbell KC (2018) Protection for medication-induced hearing loss: the state of the science. Int J Audiol 57:S67–S75CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol.2011;2011:937861Google Scholar
  261. 261.
    Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG, Ricci AJ (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One 6:e22347CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Dai P, Liu X, Han D, Qian Y, Huang D, Yuan H, Li W, Yu F, Zhang R, Lin H, He Y, Yu Y, Sun Q, Qin H, Li R, Zhang X, Kang D, Cao J, Young WY, Guan MX (2006) Extremely low penetrance of deafness associated with the mitochondrial 12S rRNA mutation in 16 Chinese families: implication for early detection and prevention of deafness. Biochem Biophys Res Commun 340:194–199CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Imamura S, Adams JC (2003) Distribution of gentamicin in the guinea pig inner ear after local or systemic application. J Assoc Res Otolaryngol 4:176–195CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Kitahara T, Li HS, Balaban CD (2005) Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Matt T, Ng CL, Lang K, Sha SH, Akbergenov R, Shcherbakov D, Meyer M, Duscha S, Xie J, Dubbaka SR, Perez-Fernandez D, Vasella A, Ramakrishnan V, Schacht J, Bottger EC (2012) Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Natl Acad Sci U S A 109:10984–10989CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Huth ME, Han KH, Sotoudeh K, Hsieh YJ, Effertz T, Vu AA, Verhoeven S, Hsieh MH, Greenhouse R, Cheng AG, Ricci AJ (2015) Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Invest 125:583–592CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chaitanya Mamillapalli
    • 1
    • 2
  • Asmita Dhukhwa
    • 3
  • Sandeep Sheth
    • 4
  • Debashree Mukherjea
    • 5
  • Leonard P. Rybak
    • 3
    • 5
  • Vickram Ramkumar
    • 3
    Email author
  1. 1.Division of Endocrinology, Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldUSA
  2. 2.Department of Endocrinology, Springfield, ClinicSpringfieldUSA
  3. 3.Department of PharmacologySouthern Illinois University School of MedicineSpringfieldUSA
  4. 4.Department of Pharmaceutical SciencesLarkin University College of PharmacyMiamiUSA
  5. 5.Division of Otolaryngology, Department of SurgerySouthern Illinois University School of MedicineSpringfieldUSA

Personalised recommendations