Advertisement

Atrial Fibrillation and Epicardial Adipose Tissue

  • Ghaith Zaatari
  • Jeffrey J. GoldbergerEmail author
Chapter
  • 12 Downloads
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Atrial fibrillation (AF) is associated with increased cardiovascular morbidity and mortality with projections that it will affect 8–12 million people in the United States by 2050. Obesity has been identified as an important independent risk factor for AF, with weight loss leading to decreased AF burden and improved arrhythmia free survival. The precise mechanisms by which obesity contributes to AF remain poorly understood. However, it has recently been speculated that epicardial adipose tissue (EAT) may be a key mediator between obesity and AF. EAT is a visceral fat depot with anatomic contiguity to the myocardium. Under physiological conditions, EAT plays an important protective role via mechanical, metabolic, and thermogenic functions. However, under pathophysiological conditions, it may contribute to development of AF through various mechanisms including fatty infiltration, fibrosis, inflammation, oxidative stress, atrial remodelling, and genetic factors. EAT has been shown in multiple studies to be a risk factor for development of AF and predictor of recurrence after catheter ablation. The mechanisms directly linking EAT to the pathogenesis of AF also are uncertain. Multiple pharmacologic options have been proposed to target EAT; however, the efficacy of targeted reduction in EAT requires further investigation.

Keywords

Atrial fibrillation Epicardial adipose tissue Fibrosis Atrial remodeling Obesity Inflammation 

References

  1. 1.
    Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113:359–64.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Beyerbach DM, Zipes DP. Mortality as an endpoint in atrial fibrillation. Heart Rhythm. 2004;1:8–19.CrossRefGoogle Scholar
  3. 3.
    Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98:946–52.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112:1142–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kim MH, Johnston SS, Chu B-C, Dalal MR, Schulman KL. Estimation of total incremental health care costs in patients with atrial fibrillation in the United States. Circ Cardiovasc Qual. 2011;4:313–20.CrossRefGoogle Scholar
  6. 6.
    Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82:2n–9n.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation: analysis and implications. Arch Intern Med. 1995;155:469–73.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Eldar M, Canetti M, Rotstein Z, Boyko V, Gottlieb S, Kaplinsky E, et al. Significance of paroxysmal atrial fibrillation complicating acute myocardial infarction in the thrombolytic era. Circulation. 1998;97:965–70.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crenshaw BS, Ward SR, Granger CB, Stebbins AL, Topol EJ, Califf RM. Atrial fibrillation in the setting of acute myocardial infarction: the GUSTO-I experience. J Am Coll Cardiol. 1997;30:406–13.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Frost L, Hune LJ, Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Med. 2005;118:489–95.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dublin S, French B, Glazer NL, Wiggins KL, Lumley T, Psaty BM, et al. Risk of new-onset atrial fibrillation in relation to body mass index. Arch Intern Med. 2006;166:2322–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306:1018–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med. 1995;98:476–84.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Conen D, Tedrow UB, Koplan BA, Glynn RJ, Buring JE, Albert CM. Influence of systolic and diastolic blood pressure on the risk of incident atrial fibrillation in women. Circulation. 2009;119:2146.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dublin S, Glazer NL, Smith NL, Psaty BM, Lumley T, Wiggins KL, et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J Gen Intern Med. 2010;25:853–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Watanabe H, Tanabe N, Watanabe T, Darbar D, Roden DM, Sasaki S, et al. Metabolic syndrome and risk of development of atrial fibrillation: the Niigata preventive medicine study. Circulation. 2008;117:1255.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003;91:2–8.CrossRefGoogle Scholar
  19. 19.
    Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir Crit Care Med. 2006;173:910–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mooe T, Gullsby S, Rabben T, Eriksson P. Sleep-disordered breathing: a novel predictor of atrial fibrillation after coronary artery bypass surgery. Coron Arter Dis. 1996;7:475–8.CrossRefGoogle Scholar
  21. 21.
    Tanigawa T, Yamagishi K, Sakurai S, Muraki I, Noda H, Shimamoto T, et al. Arterial oxygen desaturation during sleep and atrial fibrillation. Heart. 2006;92:1854–5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goldberger JJ, Arora R, Green D, Greenland P, Lee DC, Lloyd-Jones DM, et al. Evaluating the atrial myopathy underlying atrial fibrillation: identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015;132:278–91.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Goudis CA, Vasileiadis IE, Liu T. Epicardial adipose tissue and atrial fibrillation: pathophysiological mechanisms, clinical implications, and potential therapies. Curr Med Res Opin. 2018;34:1933–43.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wong CX, Ganesan AN, Selvanayagam JB. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J. 2017;38:1294–302.CrossRefGoogle Scholar
  25. 25.
    Ng Arnold CT, Strudwick M, van der Geest RJ, Ng Austin CC, Gillinder L, Goo Shi Y, et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ Cardiovasc Imaging. 2018;11:e007372.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mazurek T, Zhang L, Zalewski A, Mannion John D, Diehl James T, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6.CrossRefGoogle Scholar
  27. 27.
    Abed HS, Wittert GA. Obesity and atrial fibrillation. Obes Rev. 2013;14:929–38.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Abed HS, Samuel CS, Lau DH, Kelly DJ, Royce SG, Alasady M, et al. Obesity results in progressive atrial structural and electrical remodeling: implications for atrial fibrillation. Heart Rhythm. 2013;10:90–100.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Baek YS, Yang PS, Kim TH, Uhm JS, Park J, Pak HN, et al. Associations of abdominal obesity and new-onset atrial fibrillation in the general population. J Am Heart Assoc. 2017;6:e004705.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Goudis CA, Korantzopoulos P, Ntalas IV, Kallergis EM, Ketikoglou DG. Obesity and atrial fibrillation: a comprehensive review of the pathophysiological mechanisms and links. J Cardiol. 2015;66:361–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang TJ, Parise H, Levy D, D’Agostino RB Sr, Wolf PA, Vasan RS, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292:2471–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gami AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. J Am Coll Cardiol. 2007;49:565–71.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tedrow UB, Conen D, Ridker PM, Cook NR, Koplan BA, Manson JE, et al. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J Am Coll Cardiol. 2010;55:2319–27.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Knuiman M, Briffa T, Divitini M, Chew D, Eikelboom J, McQuillan B, et al. A cohort study examination of established and emerging risk factors for atrial fibrillation: the Busselton Health Study. Eur J Epidemiol. 2014;29:181–90.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah AS, Habib RH. Obesity and risk of new-onset atrial fibrillation after cardiac surgery. Circulation. 2005;112:3247–55.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wong CX, Sullivan T, Sun MT, Mahajan R, Pathak RK, Middeldorp M, et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a meta-analysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015;1:139–52.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lee H, Choi EK, Lee SH, Han KD, Rhee TM, Park CS, et al. Atrial fibrillation risk in metabolically healthy obesity: a nationwide population-based study. Int J Cardiol. 2017;240:221–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tsang TS, Barnes ME, Miyasaka Y, Cha SS, Bailey KR, Verzosa GC, et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur Heart J. 2008;29:2227–33.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Providencia R, Adragao P, de Asmundis C, Chun J, Chierchia G, Defaye P, et al. Impact of body mass index on the outcomes of catheter ablation of atrial fibrillation: a European Observational Multicenter Study. J Am Heart Assoc. 2019;8:e012253.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Huxley RR, Lopez FL, Folsom AR, Agarwal SK, Loehr LR, Soliman EZ, et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011;123:1501–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Long MJ, Jiang CQ, Lam TH, Xu L, Zhang WS, Lin JM, et al. Atrial fibrillation and obesity among older Chinese: the Guangzhou Biobank Cohort Study. Int J Cardiol. 2011;148:48–52.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Karasoy D, Bo Jensen T, Hansen ML, Schmiegelow M, Lamberts M, Gislason GH, et al. Obesity is a risk factor for atrial fibrillation among fertile young women: a nationwide cohort study. Europace. 2013;15:781–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Berkovitch A, Kivity S, Klempfner R, Segev S, Milwidsky A, Erez A, et al. Body mass index and the risk of new-onset atrial fibrillation in middle-aged adults. Am Heart J. 2016;173:41–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Foy AJ, Mandrola J, Liu G, Naccarelli GV. Relation of obesity to new-onset atrial fibrillation and atrial flutter in adults. Am J Cardiol. 2018;121:1072–5.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lim YM, Yang PS, Jang E, Yu HT, Kim TH, Uhm JS, et al. Body mass index variability and long-term risk of new-onset atrial fibrillation in the general population: a Korean Nationwide Cohort Study. Mayo Clin Proc. 2019;94:225–35.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sandhu RK, Conen D, Tedrow UB, Fitzgerald KC, Pradhan AD, Ridker PM, et al. Predisposing factors associated with development of persistent compared with paroxysmal atrial fibrillation. J Am Heart Assoc. 2014;3:e000916.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Badimon L, Cubedo J. Adipose tissue depots and inflammation: effects on plasticity and resident mesenchymal stem cell function. Cardiovasc Res. 2017;113:1064–73.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113:1009–23.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127:2209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by ppar-gamma/adiponectin signalling. Circ Res. 2016;118:842–55.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Antonopoulos AS, Margaritis M, Coutinho P, Digby J, Patel R, Psarros C, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34:2151–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Menke A, Muntner P, Wildman RP, Reynolds K, He J. Measures of adiposity and cardiovascular disease risk factors. Obesity. 2007;15:785–95.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.CrossRefGoogle Scholar
  54. 54.
    Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. CHS Data Brief. 2017;10(288):1–8.Google Scholar
  55. 55.
    Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013;310:2050–60.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Alonso A, Bahnson JL, Gaussoin SA, Bertoni AG, Johnson KC, Lewis CE, et al. Effect of an intensive lifestyle intervention on atrial fibrillation risk in individuals with type 2 diabetes: the Look AHEAD randomized trial. Am Heart J. 2015;170:770–7.e5.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jamaly S, Carlsson L, Peltonen M, Jacobson P, Sjostrom L, Karason K. Bariatric surgery and the risk of new-onset atrial fibrillation in Swedish obese subjects. J Am Coll Cardiol. 2016;68:2497–504.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Middeldorp ME, Pathak RK, Meredith M, Mehta AB, Elliott AD, Mahajan R, et al. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study. Europace. 2018;20:1929–35.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pathak RK, Middeldorp ME, Lau DH, Mehta AB, Mahajan R, Twomey D, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol. 2014;64:2222–31.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65:2159–69.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2019;74:104–32.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hatem SN, Redheuil A, Gandjbakhch E. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity. Cardiovasc Res. 2016;109:502–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Al-Rawahi M, Proietti R, Thanassoulis G. Pericardial fat and atrial fibrillation: epidemiology, mechanisms and interventions. Int J Cardiol. 2015;195:98–103.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Thanassoulis G, Massaro JM, O’Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3:345–50.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol. 2011;57(17):1745–51.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wong CX, Sun MT, Odutayo A, Emdin CA, Mahajan R, Lau DH, et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation. Circ Arrhythm Electrophysiol. 2016;9(12):e004378.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12:31–42.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhu W, Zhang H, Guo L, Hong K. Relationship between epicardial adipose tissue volume and atrial fibrillation: a systematic review and meta-analysis. Herz. 2016;41:421–7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    McAninch EA, Fonseca TL, Poggioli R, Panos AL, Salerno TA, Deng Y, et al. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity (Silver Spring). 2015;23:1267–78.CrossRefGoogle Scholar
  70. 70.
    Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–71.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22:450–7.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536–43.CrossRefGoogle Scholar
  73. 73.
    Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 2009;22:1311–9; quiz 417–8.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bertaso AG, Bertol D, Duncan BB, Foppa M. Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol. 2013;101:e18–28.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B. 1989;94:225–32.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Corradi D, Maestri R, Callegari S, Pastori P, Goldoni M, Luong TV, et al. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol. 2004;13:313–6.CrossRefGoogle Scholar
  77. 77.
    Iacobellis G. Epicardial and pericardial fat: close, but very different. Obesity (Silver Spring). 2009;17:625; author reply 6–7.CrossRefGoogle Scholar
  78. 78.
    Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res. 2014;102:205–13.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–17.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, et al. Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol. 2010;56:784–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Greif M, von Ziegler F, Wakili R, Tittus J, Becker C, Helbig S, et al. Increased pericardial adipose tissue is correlated with atrial fibrillation and left atrial dilatation. Clin Res Cardiol. 2013;102:555–62.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Drossos G, Koutsogiannidis C-P, Ananiadou O, Kapsas G, Ampatzidou F, Madesis A, et al. Pericardial fat is strongly associated with atrial fibrillation after coronary artery bypass graft surgery. Eur J Cardiothorac Surg. 2014;46:1014–20.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Kim TH, Park J, Park JK, Uhm JS, Joung B, Lee MH, et al. Pericardial fat volume is associated with clinical recurrence after catheter ablation for persistent atrial fibrillation, but not paroxysmal atrial fibrillation: an analysis of over 600-patients. Int J Cardiol. 2014;176:841–6.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Liu J, Taylor HA, Fox CS, Carr JJ, Ding J. Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: The Jackson Heart Study. Response to Iacobellis and Malavazos. Diabetes Care. 2010;33:e128-e.CrossRefGoogle Scholar
  85. 85.
    Tsao HM, Hu WC, Wu MH, Tai CT, Lin YJ, Chang SL, et al. Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation. Am J Cardiol. 2011;107:1498–503.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nagashima K, Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune T, et al. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ J. 2011;75:2559–65.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chao TF, Hung CL, Tsao HM, Lin YJ, Yun CH, Lai YH, et al. Epicardial adipose tissue thickness and ablation outcome of atrial fibrillation. PLoS One. 2013;8:e74926.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kocyigit D, Gurses KM, Yalcin MU, Turk G, Evranos B, Yorgun H, et al. Periatrial epicardial adipose tissue thickness is an independent predictor of atrial fibrillation recurrence after cryoballoon-based pulmonary vein isolation. J Cardiovasc Comput Tomogr. 2015;9:295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Masuda M, Mizuno H, Enchi Y, Minamiguchi H, Konishi S, Ohtani T, et al. Abundant epicardial adipose tissue surrounding the left atrium predicts early rather than late recurrence of atrial fibrillation after catheter ablation. J Interv Card Electrophysiol. 2015;44:31–7.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res. 2015;108:62–73.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Prati F, Arbustini E, Labellarte A, Sommariva L, Pawlowski T, Manzoli A, et al. Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J. 2003;24:329–36.CrossRefGoogle Scholar
  92. 92.
    Pezeshkian M, Noori M, Najjarpour-Jabbari H, Abolfathi A, Darabi M, Darabi M, et al. Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab Syndr Relat Disord. 2009;7:125–31.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Iacobellis G, Malavazos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011;43:1651–4.CrossRefGoogle Scholar
  94. 94.
    Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94:3611–5.CrossRefGoogle Scholar
  95. 95.
    Sacks HS, Fain JN. Human epicardial fat: what is new and what is missing? Clin Exp Pharmacol Physiol. 2011;38:879–87.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55:2319–26.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. Am J Physiol Endocrinol Metab. 2010;299:E721–9.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11:85–97.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wong HK, Cheung TT, Cheung BM. Adrenomedullin and cardiovascular diseases. JRSM Cardiovasc Dis. 2012;1:1–7.CrossRefGoogle Scholar
  100. 100.
    Munger TM, Dong YX, Masaki M, Oh JK, Mankad SV, Borlaug BA, et al. Electrophysiological and hemodynamic characteristics associated with obesity in patients with atrial fibrillation. J Am Coll Cardiol. 2012;60:851–60.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mahajan R, Lau DH, Brooks AG, Shipp NJ, Manavis J, Wood JP, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol. 2015;66:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Yorgun H, Canpolat U, Aytemir K, Hazirolan T, Sahiner L, Kaya EB, et al. Association of epicardial and peri-atrial adiposity with the presence and severity of non-valvular atrial fibrillation. Int J Cardiovasc Imaging. 2015;31:649–57.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wong CX, Stiles MK, John B, Brooks AG, Lau DH, Dimitri H, et al. Direction-dependent conduction in lone atrial fibrillation. Heart Rhythm. 2010;7:1192–9.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Wong CX, John B, Brooks AG, Chandy ST, Kuklik P, Lau DH, et al. Direction-dependent conduction abnormalities in the chronically stretched atria. Europace. 2012;14:954–61.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Eckstein J, Zeemering S, Linz D, Maesen B, Verheule S, van Hunnik A, et al. Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endo-epicardial high-density activation mapping. Circ Arrhythm Electrophysiol. 2013;6:334–41.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38:53–61.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Guo Y, Lip GY, Apostolakis S. Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012;60:2263–70.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wu N, Xu B, Xiang Y, Wu L, Zhang Y, Ma X, et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: a meta-analysis. Int J Cardiol. 2013;169:62–72.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA, et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104:2886–91.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Malouf JF, Kanagala R, Al Atawi FO, Rosales AG, Davison DE, Murali NS, et al. High sensitivity C-reactive protein: a novel predictor for recurrence of atrial fibrillation after successful cardioversion. J Am Coll Cardiol. 2005;46:1284–7.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006–10.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Rotter M, Jais P, Vergnes MC, Nurden P, Takahashi Y, Sanders P, et al. Decline in C-reactive protein after successful ablation of long-lasting persistent atrial fibrillation. J Am Coll Cardiol. 2006;47:1231–3.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Li J, Solus J, Chen Q, Rho YH, Milne G, Stein CM, et al. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 2010;7:438–44.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Yamashita T, Sekiguchi A, Iwasaki YK, Date T, Sagara K, Tanabe H, et al. Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circ J. 2010;74:262–70.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Acet H, Ertas F, Akil MA, Oylumlu M, Polat N, Yildiz A, et al. New inflammatory predictors for non-valvular atrial fibrillation: echocardiographic epicardial fat thickness and neutrophil to lymphocyte ratio. Int J Cardiovasc Imaging. 2014;30:81–9.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Malavazos AE, Ermetici F, Coman C, Corsi MM, Morricone L, Ambrosi B. Influence of epicardial adipose tissue and adipocytokine levels on cardiac abnormalities in visceral obesity. Int J Cardiol. 2007;121:132–4.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Chang SL, Tuan TC, Tai CT, Lin YJ, Lo LW, Hu YF, et al. Comparison of outcome in catheter ablation of atrial fibrillation in patients with versus without the metabolic syndrome. Am J Cardiol. 2009;103:67–72.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Mazurek T, Kiliszek M, Kobylecka M, Skubisz-Gluchowska J, Kochman J, Filipiak K, et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol. 2014;113:1505–8.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Kusayama T, Furusho H, Kashiwagi H, Kato T, Murai H, Usui S, et al. Inflammation of left atrial epicardial adipose tissue is associated with paroxysmal atrial fibrillation. J Cardiol. 2016;68:406–11.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Sun Y, Xun K, Wang C, Zhao H, Bi H, Chen X, et al. Adiponectin, an unlocking adipocytokine. Cardiovasc Ther. 2009;27:59–75.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Kourliouros A, Karastergiou K, Nowell J, Gukop P, Tavakkoli Hosseini M, Valencia O, et al. Protective effect of epicardial adiponectin on atrial fibrillation following cardiac surgery. Eur J Cardiothorac Surg. 2011;39:228–32.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Ybarra J, Resmini E, Planas F, Navarro-López F, Webb S, Pou JM, et al. Relationship between adiponectin and left atrium size in uncomplicated obese patients: adiponectin, a link between fat and heart. Obes Surg. 2009;19:1324–32.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    van Osch D, Dieleman JM, van Dijk D, Jacob KA, Kluin J, Doevendans PA, et al. Dexamethasone for the prevention of postoperative atrial fibrillation. Int J Cardiol. 2015;182:431–7.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Liu C, Wang J, Yiu D, Liu K. The efficacy of glucocorticoids for the prevention of atrial fibrillation, or length of intensive care unit or hospital stay after cardiac surgery: a meta-analysis. Cardiovasc Ther. 2014;32:89–96.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Lin YK, Chen YC, Chen JH, Chen SA, Chen YJ. Adipocytes modulate the electrophysiology of atrial myocytes: implications in obesity-induced atrial fibrillation. Basic Res Cardiol. 2012;107:293.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Friedman DJ, Wang N, Meigs JB, Hoffmann U, Massaro JM, Fox CS, et al. Pericardial fat is associated with atrial conduction: the Framingham Heart Study. J Am Heart Assoc. 2014;3:e000477.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zghaib T, Ipek EG, Zahid S, Balouch MA, Misra S, Ashikaga H, et al. Association of left atrial epicardial adipose tissue with electrogram bipolar voltage and fractionation: electrophysiologic substrates for atrial fibrillation. Heart Rhythm. 2016;13:2333–9.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Takahashi Y, Sanders P, Jais P, Hocini M, Dubois R, Rotter M, et al. Organization of frequency spectra of atrial fibrillation: relevance to radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 2006;17:382–8.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Atienza F, Calvo D, Almendral J, Zlochiver S, Grzeda KR, Martinez-Alzamora N, et al. Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. J Am Coll Cardiol. 2011;57:1081–92.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87–95.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Schnabel RB, Larson MG, Yamamoto JF, Kathiresan S, Rong J, Levy D, et al. Relation of multiple inflammatory biomarkers to incident atrial fibrillation. Am J Cardiol. 2009;104:92–6.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab. 2006;91:4620–7.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–9.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96:1180–4.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Patella S, Phillips DJ, de Kretser DM, Evans LW, Groome NP, Sievert W. Characterization of serum activin-A and follistatin and their relation to virological and histological determinants in chronic viral hepatitis. J Hepatol. 2001;34:576–83.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    De Bleser PJ, Niki T, Xu G, Rogiers V, Geerts A. Localization and cellular sources of activins in normal and fibrotic rat liver. Hepatology. 1997;26:905–12.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Werner S, Alzheimer C. Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev. 2006;17:157–71.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 2015;36:795–805a.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Greulich S, Maxhera B, Vandenplas G, de Wiza DH, Smiris K, Mueller H, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation. 2012;126:2324–34.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Oshima Y, Ouchi N, Shimano M, Pimentel David R, Papanicolaou Kyriakos N, Panse Kalyani D, et al. Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. Circulation. 2009;120:1606–15.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Greulich S, de Wiza DH, Preilowski S, Ding Z, Mueller H, Langin D, et al. Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. J Cell Mol Med. 2011;15:2399–410.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Boixel C, Fontaine V, Rucker-Martin C, Milliez P, Louedec L, Michel JB, et al. Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. J Am Coll Cardiol. 2003;42:336–44.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Nagashima K, Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune M, et al. Does location of epicardial adipose tissue correspond to endocardial high dominant frequency or complex fractionated atrial electrogram sites during atrial fibrillation? Circ Arrhythm Electrophysiol. 2012;5:676–83.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Laxton RC, Hu Y, Duchene J, Zhang F, Zhang Z, Leung KY, et al. A role of matrix metalloproteinase-8 in atherosclerosis. Circ Res. 2009;105:921–9.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Xiao Q, Zhang F, Lin L, Fang C, Wen G, Tsai TN, et al. Functional role of matrix metalloproteinase-8 in stem/progenitor cell migration and their recruitment into atherosclerotic lesions. Circ Res. 2013;112:35–47.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Felkin LE, Birks EJ, George R, Wong S, Khaghani A, Yacoub MH, et al. A quantitative gene expression profile of matrix metalloproteinases (MMPS) and their inhibitors (TIMPS) in the myocardium of patients with deteriorating heart failure requiring left ventricular assist device support. J Heart Lung Transplant. 2006;25:1413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Wang Q, Xi W, Yin L, Wang J, Shen H, Gao Y, et al. Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 2018;8:3585.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Aimé-Sempé C, Folliguet T, Rücker-Martin C, Krajewska M, Krajewski S, Heimburger M, et al. Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol. 1999;34:1577–86.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ausma J, Wijffels M, Van Eys G, Koide M, Ramaekers F, Allessie M, et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol. 1997;151:985.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006;24:150–4.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Rangappa S, Fen C, Lee EH, Bongso A, Wei ESK. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg. 2003;75:775–9.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Vural M, Talu A, Sahin D, Elalmis OU, Durmaz HA, Uyanik S, et al. Evaluation of the relationship between epicardial fat volume and left ventricular diastolic dysfunction. Jpn J Radiol. 2014;32:331–9.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Suffee N, Moore-Morris T, Farahmand P, Rücker-Martin C, Dilanian G, Fradet M, et al. Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proc Natl Acad Sci U S A. 2017;114:E771–E80.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Salgado-Somoza A, Teijeira-Fernandez E, Fernandez AL, Gonzalez-Juanatey JR, Eiras S. Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am J Physiol Heart Circ Physiol. 2010;299:H202–9.CrossRefGoogle Scholar
  157. 157.
    Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S, et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89:E32–8.CrossRefGoogle Scholar
  158. 158.
    Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20:1186–9.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Coumel P. Paroxysmal atrial fibrillation: a disorder of autonomic tone? Eur Heart J. 1994;15(Suppl A):9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Balcioglu AS, Cicek D, Akinci S, Eldem HO, Bal UA, Okyay K, et al. Arrhythmogenic evidence for epicardial adipose tissue: heart rate variability and turbulence are influenced by epicardial fat thickness. Pacing Clin Electrophysiol. 2015;38:99–106.CrossRefGoogle Scholar
  161. 161.
    Nakagawa H, Scherlag BJ, Patterson E, Ikeda A, Lockwood D, Jackman WM. Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm. 2009;6(12 Suppl):S26–34.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Stavrakis S, Nakagawa H, Po SS, Scherlag BJ, Lazzara R, Jackman WM. The role of the autonomic ganglia in atrial fibrillation. JACC Clin Electrophysiol. 2015;1:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Scherlag BJ, Yamanashi W, Patel U, Lazzara R, Jackman WM. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45:1878–86.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol. 2006;47:1196–206.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114:1500–15.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Pokushalov E, Kozlov B, Romanov A, Strelnikov A, Bayramova S, Sergeevichev D, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: one-year follow-up of a randomized pilot study. Circ Arrhythm Electrophysiol. 2015;8:1334–41.CrossRefGoogle Scholar
  168. 168.
    Chilukoti RK, Giese A, Malenke W, Homuth G, Bukowska A, Goette A, et al. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria. Int J Cardiol. 2015;187:604–13.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Chami M, Gozuacik D, Lagorce D, Brini M, Falson P, Peaucellier G, et al. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol. 2001;153:1301–14.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Viviano A, Yin X, Zampetaki A, Fava M, Gallagher M, Mayr M, et al. Proteomics of the epicardial fat secretome and its role in post-operative atrial fibrillation. Europace. 2018;20:1201–8.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Batal O, Schoenhagen P, Shao M, Ayyad AE, Van Wagoner DR, Halliburton SS, et al. Left atrial epicardial adiposity and atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:230–6.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Shin SY, Yong HS, Lim HE, Na JO, Choi CU, Choi JI, et al. Total and interatrial epicardial adipose tissues are independently associated with left atrial remodeling in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22:647–55.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Nakanishi K, Fukuda S, Tanaka A, Otsuka K, Sakamoto M, Taguchi H, et al. Peri-atrial epicardial adipose tissue is associated with new-onset nonvalvular atrial fibrillation. Circ J. 2012;76:2748–54.CrossRefGoogle Scholar
  174. 174.
    Kanazawa H, Yamabe H, Enomoto K, Koyama J, Morihisa K, Hoshiyama T, et al. Importance of pericardial fat in the formation of complex fractionated atrial electrogram region in atrial fibrillation. Int J Cardiol. 2014;174:557–64.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Murakami C, Nagai T, Akira F, Kido T, Nishimura K, Inoue K, et al. Total epicardial fat volume is associated with early recurrence of atrial fibrillation after catheter ablation. J Am Coll Cardiol. 2012;59(13 Suppl):E691.CrossRefGoogle Scholar
  176. 176.
    Soucek F, Covassin N, Singh P, Ruzek L, Kara T, Suleiman M, et al. Epicardial adipose tissue volume predicts atrial fibrillation recurrence after pulmonary vein isolation. Eur Heart J. 2014;35:431.CrossRefGoogle Scholar
  177. 177.
    Canpolat U, Aytemir K, Yorgun H, Asil S, Dural M, Özer N. The impact of echocardiographic epicardial fat thickness on outcomes of cryoballoon-based atrial fibrillation ablation. Echocardiography. 2016;33:821–9.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Ciuffo L, Nguyen H, Marques MD, Aronis KN, Sivasambu B, et al. Periatrial fat quality predicts atrial fibrillation ablation outcome. Circ Cardiovasc Imaging. 2019;12:e008764.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Mirolo A, Viart G, Savouré A, Godin B, Raitière O, Eltchaninoff H, et al. Epicardial fat thickness predicts atrial fibrillation recurrence after a first pulmonary vein isolation procedure using a second-generation cryoballoon. Arch Cardiovasc Dis. 2019;112:314–22.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Gaeta M, Bandera F, Tassinari F, Capasso L, Cargnelutti M, Pelissero G, et al. Is epicardial fat depot associated with atrial fibrillation? A systematic review and meta-analysis. Europace. 2017;19:747–52.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Opolski MP, Staruch AD, Kusmierczyk M, Witkowski A, Kwiecinska S, Kosek M, et al. Computed tomography angiography for prediction of atrial fibrillation after coronary artery bypass grafting: proof of concept. J Cardiol. 2015;65:285–92.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Cho KI, Kim BJ, Cha TJ, Heo JH, Kim HS, Lee JW. Impact of duration and dosage of statin treatment and epicardial fat thickness on the recurrence of atrial fibrillation after electrical cardioversion. Heart Vessel. 2015;30:490–7.CrossRefGoogle Scholar
  183. 183.
    Kawakami H, Satomi K, Nakajima I, Miyamoto K, Yamada Y, Okamura H, et al. Total epicardial adipose tissue volume is associated with outcome of pulmonary vein isolation for atrial fibrillation. Europace. 2013;15:ii218.Google Scholar
  184. 184.
    Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, et al. Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis. 2008;197:896–903.CrossRefGoogle Scholar
  185. 185.
    Abbara S, Desai JC, Cury RC, Butler J, Nieman K, Reddy V. Mapping epicardial fat with multi-detector computed tomography to facilitate percutaneous transepicardial arrhythmia ablation. Eur J Radiol. 2006;57:417–22.CrossRefGoogle Scholar
  186. 186.
    Hasebe H, Yoshida K, Iida M, Hatano N, Muramatsu T, Nogami A, et al. Differences in the structural characteristics and distribution of epicardial adipose tissue between left and right atrial fibrillation. Europace. 2017;20:435–42.CrossRefGoogle Scholar
  187. 187.
    Altun B, Colkesen Y, Gazi E, Tasolar H, Temiz A, Simsek HY, et al. Could epicardial adipose tissue thickness by echocardiography be correlated with acute coronary syndrome risk scores. Echocardiography. 2013;30:1130–4.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Gul I, Zungur M, Aykan AC, Gokdeniz T, Kalaycioğlu E, Turan T, et al. The relationship between GRACE score and epicardial fat thickness in non-STEMI patients. Arq Bras Cardiol. 2016;106:194–200.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Özcan F, Turak O, Canpolat U, Kanat S, Kadife İ, Avcı S, et al. Association of epicardial fat thickness with TIMI risk score in NSTEMI/USAP patients. Herz. 2014;39:755–60.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Zencirci E, Zencirci AE, Değirmencioğlu A, Karakuş G, Uğurlucan M, Özden K, et al. The relationship between epicardial adipose tissue and ST-segment resolution in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Heart Vessel. 2015;30:147–53.CrossRefGoogle Scholar
  191. 191.
    Wang T, Liu Q, Liu C, Sun L, Li D, Liu A, et al. Correlation of echocardiographic epicardial fat thickness with severity of coronary artery disease in patients with acute myocardial infarction. Echocardiography. 2014;31:1177–81.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Tanindi A, Erkan AF, Ekici B. Epicardial adipose tissue thickness can be used to predict major adverse cardiac events. Coron Artery Dis. 2015;26:686–91.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Hajsadeghi F, Nabavi V, Bhandari A, Choi A, Vincent H, Flores F, et al. Increased epicardial adipose tissue is associated with coronary artery disease and major adverse cardiovascular events. Atherosclerosis. 2014;237:486–9.CrossRefGoogle Scholar
  194. 194.
    Cheng VY, Dey D, Tamarappoo B, Nakazato R, Gransar H, Miranda-Peats R, et al. Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging. 2010;3:352–60.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Bos D, Vernooij MW, Shahzad R, Kavousi M, Hofman A, van Walsum T, et al. Epicardial fat volume and the risk of atrial fibrillation in the general population free of cardiovascular disease. JACC Cardiovasc Imaging. 2017;10:1405–7.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Akdag S, Simsek H, Sahin M, Akyol A, Duz R, Babat N. Association of epicardial adipose tissue thickness and inflammation parameters with CHA2DS2-VASc score in patients with nonvalvular atrial fibrillation. Ther Clin Risk Manag. 2015;11:1675.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Tsao HM, Hu WC, Tsai PH, Lee CL, Liu FC, Wang HH, et al. The abundance of epicardial adipose tissue surrounding left atrium is associated with the occurrence of stroke in patients with atrial fibrillation. Medicine (Baltimore). 2016;95:e3260.CrossRefGoogle Scholar
  198. 198.
    Chu CY, Lee WH, Hsu PC, Lee MK, Lee HH, Chiu CA, et al. Association of increased epicardial adipose tissue thickness with adverse cardiovascular outcomes in patients with atrial fibrillation. Medicine (Baltimore). 2016;95:e2874.CrossRefGoogle Scholar
  199. 199.
    Nakazato R, Rajani R, Cheng VY, Shmilovich H, Nakanishi R, Otaki Y, et al. Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography. Atherosclerosis. 2012;220:139–44.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Gaborit B, Jacquier A, Kober F, Abdesselam I, Cuisset T, Boullu-Ciocca S, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60:1381–9.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Rabkin S, Campbell H. Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes Rev. 2015;16:406–15.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Fenk S, Fischer M, Strack C, Schmitz G, Loew T, Lahmann C, et al. Successful weight reduction improves left ventricular diastolic function and physical performance in severe obesity. Int Heart J. 2015;56:196–202.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Alexopoulos N, Melek BH, Arepalli CD, Hartlage G-R, Chen Z, Kim S, et al. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: a substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J Am Coll Cardiol. 2013;61:1956–61.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Rezaei Y, Gholami-Fesharaki M, Dehghani MR, Arya A, Haghjoo M, Arjmand N. Statin antiarrhythmic effect on atrial fibrillation in statin-naive patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 2016;21:167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Fauchier L, Clementy N, Babuty D. Statin therapy and atrial fibrillation: systematic review and updated meta-analysis of published randomized controlled trials. Curr Opin Cardiol. 2013;28:7–18.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Elisha B, Azar M, Taleb N, Bernard S, Iacobellis G, Rabasa-Lhoret R. Body composition and epicardial fat in type 2 diabetes patients following insulin detemir versus insulin glargine initiation. Horm Metab Res. 2016;48:42–7.PubMedPubMedCentralGoogle Scholar
  207. 207.
    Iacobellis G, Camarena V, Sant DW, Wang G. Human epicardial fat expresses glucagon-like peptide 1 and 2 receptors genes. Horm Metab Res. 2017;49:625–30.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Iacobellis G. Letter to the Editor: “GLP-1 receptor expression within the human heart”. Endocrinology. 2018;159:1964–5.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Iacobellis G, Mohseni M, Bianco SD, Banga PK. Liraglutide causes large and rapid epicardial fat reduction. Obesity. 2017;25:311–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Miami Miller School of Medicine, Department of Medicine, Cardiovascular DivisionMiamiUSA

Personalised recommendations