Advertisement

Sorghum Improvement Through Efficient Breeding Technologies

  • D. BalakrishnaEmail author
  • Avinash Singode
  • B. Venkatesh Bhat
  • Vilas A. Tonapi
Chapter
  • 63 Downloads

Abstract

Sorghum is one of the most adaptive crops cultivated by mankind. It is the crop of subsistence in arid and semi-arid regions of the world. Sorghum has immense diversity which human has harnessed for various end uses. Globally, sorghum ranks fifth among the major cereal crops. The crop has emerged as a solution to climate change it has inherent heat and moisture stress tolerance. Sorghum is a potential bio-energy crop, first- and second- generation biofuel production. All these attributes have attracted researchers from the new and old world. There is immense progress in sorghum improvement since the nineteenth century. Advanced breeding technologies have been deployed to study genetics of traits with a focus to improve economic yield. The sorghum improvement took in phases, and every phase faced different challenge. It is important to know the succession of sorghum improvement to lead the future. This chapter will familiarize the readers with tools and techniques that were found efficient in sorghum improvement.

Keywords

Sorghum Breeding Genomics Mapping Transgenics Mutation 

References

  1. Allchin FR, Allchin B (1982) The rise of civilization in India and Pakistan. Cambridge University Press, CambridgeGoogle Scholar
  2. Andrews DJ, Nath B, Hare BW (1977) Methods of population improvement in pearl millet and sorghum, second FAO/SIDA seminar on field crops in Africa and the near east, Lahore, Pakistan. ICRISAT, PatancheruGoogle Scholar
  3. Andrews DJ, Webster OJ (1971) A new factor for genetic male-sterility in Sorghum bicolor (L.) Moench. Crop Sci 11:308Google Scholar
  4. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326PubMedGoogle Scholar
  5. Arulselvi IP, Michael P, Umamaheswari S, Krishnaveni S (2010) Agrobacterium mediated transformation of Sorghum bicolor for disease resistance. Int J Pharm BioSci 1:272–281Google Scholar
  6. Aruna C, Padmaja PG (2009) Evaluation of genetic potential of shoot fly resistant sources in sorghum (Sorghum bicolor (L.)). J Agric Sci 147:71–80Google Scholar
  7. Ayyangar GNR, BWX Ponnaiya (1937a) The occurrence and inheritance of earheads with empty anther sacs in sorghum. Curr Sci 5:390Google Scholar
  8. Ayyangar GNR, BWX Ponnaiya (1937b) The occurrence and inheritance of purple pigment on the glumes of sorghum close on emergence from the boot. Curr Sci 5:590Google Scholar
  9. Ayyangar GNR (1942) In conjunction with Bhatia GS, Kumar LSS, Sabnis TS. The description of crop plant characters and their ranges of variation: IV. The variability of Indian sorghum (Jowar). Indian J Agric Sci 12:529Google Scholar
  10. Balakrishna D, Srinivasan Babu K, Venkatesh Bhat B, Vinodh R, Sreedhar M, Shyam Prasad G, Pawar DB, Shekharappa, Mohammad Ilyas MO, Patil JV (2015) Improved shoot fly resistant sources by gamma irradiation induced mutations in sorghum (Sorghum bicolor (L.) Moench). Indian J Plant Protec 43(4):403–410Google Scholar
  11. Barrabbas Z (1962) Observations of sex differentiation in Sorghum by use of induced male-sterility mutants. Nature Lond 195:257Google Scholar
  12. Belide S, Vanhercke T, Petrie JR, Singh SP (2017) Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 13:109PubMedPubMedCentralGoogle Scholar
  13. Bernardo RN (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41(1):1–4Google Scholar
  14. Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206:573–585PubMedPubMedCentralGoogle Scholar
  15. Boyles RE, Brenton ZW, Kresovich S (2019) Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. Planta J97(1):19–39Google Scholar
  16. Brenton ZW, Cooper EA, Myers MT, Boyles RE, Shakoor N, Zielinski KJ, Rauh BL, Bridges WC, Morris GP, Kresovich S (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204(1):21–33PubMedPubMedCentralGoogle Scholar
  17. Bretaudeau A (1997) Radiation induced mutations for breeding of sorghum. Proceedings of a final research co-ordination meeting, joint FAO/IAEA division of nuclear techniques in food and agriculture, Vienna, 145:25–29Google Scholar
  18. Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942PubMedGoogle Scholar
  19. Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216PubMedPubMedCentralGoogle Scholar
  20. Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Hayes GZ, Miller M, Liu D, Lawit SJ, Zhao ZY, Albertsen MC, Jones TJ (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J 16:1388–1395PubMedPubMedCentralGoogle Scholar
  21. Conner AB, Karper RE (1927) Hybrid vigour in sorghum. Texas Agric Expt Stat Bull 359:21–26Google Scholar
  22. Devi PB, Sticklen MB (2003) In vitro culture and genetic transformation of sorghum by microprojectile bombardment. Plant Biosyst 137:249–254Google Scholar
  23. Doggett H (1968) Mass selection systems for sorghum, Sorghum bicolor (L) Moench. Crop Sci 8:291Google Scholar
  24. Doggett H (1972) The improvement of sorghum in East Africa. In: Rao NGP, Housey LR (eds) Sorghum in seventies. Oxford and IBH Publishing Co, New DelhiGoogle Scholar
  25. Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical, EssexGoogle Scholar
  26. Doggett H, Jowett D (1963) Record of research. Ann Rep E Afr Agr for Res Org 1963:33–36Google Scholar
  27. Doggett H, Jowett D (1964) Record of research. Ann Rep E Afr Agr for Res Org 1964:89–91Google Scholar
  28. Doggett H, Majisu BN (1968) Disruptive selection in crop development. Heredity 23:1–23Google Scholar
  29. El’konin LA, Beliaeva EV, Fadeeva II (2012) Expression of the apomictic potential and selection for apomixis in sorghum line AS-1a. Genetika 48(1):40–49PubMedGoogle Scholar
  30. Elkonin LA, ItalianskayaI JV, Domanina VN, Selivanov NY, Rakitin AL, Ravi NV (2016) Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russ J Plant Physiol 63:678–689Google Scholar
  31. Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tiss Org Cult 61:115–123Google Scholar
  32. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379PubMedPubMedCentralGoogle Scholar
  33. FAO (2018) FAOSTAT. Food and Agricultural Organization, Rome. http://fao.org/faostat/en/#homeGoogle Scholar
  34. Finnell HH (1929) Sorghum crops on the high plains of Oklahoma. Oklahama Agric Exp Stat Bull 191Google Scholar
  35. Finnell HH (1930) New varieties of grain Sorghum. The panhandle bulletin, no. 22. Panhandle Aund M, College, Goodwell, OKGoogle Scholar
  36. Galla G, Siena LA, Ortiz JPA, Baumlein H, Barcaccia G, Pessino SC, Bellucci M, Pupilli F (2019) A portion of the Apomixis locus of Paspalum simplex is microsyntenic with an unstable chromosome segment highly conserved among Poaceae. Sci Rep 9(1):1–12Google Scholar
  37. Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333PubMedGoogle Scholar
  38. Gao Z, Xie X, Ling Y, Muthukrishnana S, Liang GH (2005b) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J3:591–599Google Scholar
  39. Gilmore EC (1964) Suggested method of using reciprocal recurrent selection in some naturally self-pollinated species. Crop Sci 4:323–325Google Scholar
  40. Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Sivarama Prasad L, Bhat BV, Royer M, Secundo BS, Lakshmi Narasu M, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24(9):513–522PubMedGoogle Scholar
  41. Goffinet B, Gerber S (2000) Quantitative trait loci: a metaanalysis. Genetics 155:463–473PubMedPubMedCentralGoogle Scholar
  42. Grewal RPS, Lodhi GP, Paroda RS (1987) Inheritance of field resistance to oval leaf spot. Indian J Genet 47(1):41–45Google Scholar
  43. Grootboom AW, Mkhonza NL, O'Kennedy MO, Chakauya E, Kunert K, Chikwamba RK (2010) Biolistic mediated sorghum (Sorghum bicolor (L.) Moench) transformation via mannose and bialaphos based selection systems. Int J Bot 6(2):89–94Google Scholar
  44. Guan YA, Wang HL, Qin L, Zhang HW, Yang YB, Gao FJ, Li RY, Wang HG (2011) QTL mapping of bio-energy related traits in sorghum. Euphytica 182:431–440Google Scholar
  45. Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28:429–444PubMedGoogle Scholar
  46. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176Google Scholar
  47. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447PubMedPubMedCentralGoogle Scholar
  48. Ram H, Lodhi GP (1992) Stem borer resistance in sorghum. Forage Res 18:6–8Google Scholar
  49. House LR (1985) A guide to sorghum breeding, 2nd edn. ICRISAT, PatancheruGoogle Scholar
  50. Human S, Sihono S, Parno P (2012) Application of mutation techniques in sorghum breeding for improved drought tolerance. Atom Indonesia 32(1):35–43Google Scholar
  51. Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech, London, pp 45–83Google Scholar
  52. Jordan DR, Mace ES, Henzell RG, Klein PE, Klein RR (2010) Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120:1279–1287PubMedGoogle Scholar
  53. Kajale MD (1990) Observations on the plant remains from excavation at chalcolithic Kaothe, district Dhule, Maharashtra with cautionary remarks on their interpretations. In: Dhavalikar MK, Shinde VS, Atre SM (eds) Excavations at Kaothe. Pune, Deccan College, pp 265–280Google Scholar
  54. Kajale MD (1991) Current status of Indian palaeoethnobotany: introduced and indigenous food plants with a discussion of the historical and evolutionary development of Indian agriculture and agricultural systems in general. In: Renfrew JM (ed) New light on early farming–recent developments in palaeoethnobotany. Edinburgh University Press, Edinburgh, pp 155–189Google Scholar
  55. Karper RE, Quinby JR (1937) Hybrid vigor in sorghum. J Hered 28:82–91Google Scholar
  56. Karper RE, Quinby JR (1946) The history and evolution of milo in the United States. Agron J 38:441–453Google Scholar
  57. Karper RE, Stephens JC (1936) Floral abnormalities in Sorghum. J Hered 17:183Google Scholar
  58. Kimber CT (2000) Origin of domesticated sorghum and its early diffusion to India and China. Smith CW, Frederiksen RA Sorghum: origin, history, technology and production. John Wiley and Sons, Inc., New York, NY 1.1, pp: 3–98Google Scholar
  59. Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early season cold tolerance in sorghum. Theor Appl Genet 116:577–587PubMedGoogle Scholar
  60. Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10:3659–3670Google Scholar
  61. Lam TBT, Jiyama K, Stone BA (1996) Lignin and hydroxycinnamic acids in walls of brown midrib mutants of sorghum, pearl millet and maize stems. J Sci Food Agric 71(2):174–178Google Scholar
  62. Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018) Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol 177:1425–1438PubMedPubMedCentralGoogle Scholar
  63. Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31:999–1007PubMedPubMedCentralGoogle Scholar
  64. Liu G, Li J, Godwin ID (2019) Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. Methods Mol Biol 1931:169–183PubMedGoogle Scholar
  65. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165(4):2117–2128PubMedPubMedCentralGoogle Scholar
  66. Lodhi GP, Dangi OP (1981) Genetics of yield and quality characters in forage sorghum. Forage Res 7:57–71Google Scholar
  67. Mace E, Jordan D (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356PubMedGoogle Scholar
  68. Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D (2019) The Sorghum QTL atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132(3):751–766PubMedGoogle Scholar
  69. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013) Whole genome resequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320PubMedPubMedCentralGoogle Scholar
  70. Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and Stover-quality traits for cellulosic ethanol in maize. Crop Sci 53(1):58–66Google Scholar
  71. McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, Kennedy M, Amirebrahimi M, Weers BD, McKinley B, Mattison A, Morishige DT, Grimwood J, Schmutz J, Mullet JE (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93(2):338–354PubMedGoogle Scholar
  72. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  73. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agro climatic traits in sorghum. Proc Natl Acad Sci 110(2):453–458Google Scholar
  74. Muleta KT, Pressoir G, Morris GP (2019) Optimizing genomic selection for a sorghum breeding program in Haiti: a simulation study. G3 Genes Genomes Genet 9(2):391–401Google Scholar
  75. Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179Google Scholar
  76. Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193Google Scholar
  77. Murthy UR, Schertz KF, Bashaw EG (1972) Apomictic and sexual reproduction in sorghum. Indian J Genet Plant Breed 39(2):271–278Google Scholar
  78. Murty BR, Govil JN (1967) Description of 70 groups in genus sorghum based on a modified Snowden classification. Indian J Genet 27:75–91Google Scholar
  79. Murty UR, Rao NGP (1972) Apomixis in breeding grain sorghums. In: PRao NG, House LR (eds) Sorghum in seventies. Oxford and I. B. H. Publishing Co., New DelhiGoogle Scholar
  80. Nath B (1977) Advanced population breeding. A paper presented at the international sorghum workshop, 6–13 1977. ICRISAT, HyderabadGoogle Scholar
  81. Nguyen TV, Tran TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using and improved in vitro regeneration system. Plant Cell Tiss Org Cult 91:155–164Google Scholar
  82. Nirwan RS, Kothari SL (2003) High copper levels improve callus induction and plant regeneration in Sorghum bicolor (L.) Moench. In Vitro Cell Dev Biol Plant 39:161–164Google Scholar
  83. Obilana AT, El-Rouby MM (1980) Recurrent mass selection for yield in two random mating populations of sorghum [Sorghum bicolor (L.) Moench]. Maydica 25:127–133Google Scholar
  84. Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ (2005) Comparative effects of the Sorghum bmr-6 and bmr-12 genes: I. forage Sorghum yield and quality. Crop Sci 45:2234–2239Google Scholar
  85. Pahuja S, Aruna C, Shrotria P, Kaur S, Ranwah B, Patil J (2013) Inducing variability in multi-cut forage sorghum through mutagenesis. Plant Genet Resour 11(2):114–120Google Scholar
  86. Pandey S, Shrotria PK (2009) Genetic parameters for hydrocyanic acid content in forage sorghum [Sorghum bicolor (l.) Moench]. Forage Res 35(1):17–19Google Scholar
  87. Paroda RS, Lodhi GP (1981) Genetic improvement in forage sorghum. Forage Res 7:17–56Google Scholar
  88. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedGoogle Scholar
  89. Pena PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente T (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8:434PubMedPubMedCentralGoogle Scholar
  90. Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic-mapping of quantitative trait loci for panicle characteristics and kernel weight in sorghum. Braz J Genet 18:249–257Google Scholar
  91. Porter KS, Axtell JS, Lechtenberg VL, Colenbrander VF (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci 18:205–208Google Scholar
  92. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus sorghum (Poaceae). Ann Bot 95:219–227PubMedPubMedCentralGoogle Scholar
  93. Quinby JR (1967) The maturity genes of sorghum. Adv Agron 19:267–305Google Scholar
  94. Quinby JR, Schertz KF (1970) Sorghum, genetics, breeding, and hybrid seed production. In: Wall JS, Ross WM (eds) Sorghum production and utilization. AVI Publ. Co., Westport, CTGoogle Scholar
  95. Rakshit S, Hariprasanna K, Gomashe S, Ganapathy KN, Das IK, Ramana OV, Dhandapani A, Patil JV (2014) Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci 54:1571–1584Google Scholar
  96. Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616Google Scholar
  97. Rao NGP, Murty UR (1972) Further studies on obligate apomixis in grain sorghum, Sorghum bicolor (L.) Moench. Indian J Genet 32:379–383Google Scholar
  98. Rao NGP, Narayana LL (1968) Apomixis in grain sorghums. Indian J Genet 28:121–127Google Scholar
  99. Rao NGP, Narayana LL, Reddy RN (1978) Apomixis and its utilization in grain sorghum-1. Embryology of two apomictic parents. Caryologia 31(4):427–433Google Scholar
  100. Reddy BVS, Ashok Kumar A, Sanjana Reddy P (2008) Genetic improvement of sorghum in the semi-arid tropics. In: Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 105–123Google Scholar
  101. Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genome 18:15Google Scholar
  102. Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6(1):15–32Google Scholar
  103. Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400Google Scholar
  104. Ross WM (1971) Multiple alleles for height in sorghum. Sorghum Newsl 14:89Google Scholar
  105. Rowley-Conwy P, Deakin WJ, Shaw CH (1997) Ancient DNA from archaeological sorghum (Sorghum bicolor) from Qasr Ibrim, Nubia: implications for domestication and evolution and a review of archaeological evidence. Sahara 9:23–36Google Scholar
  106. Saballos A, Vermerris W, Rivera-Vega L, Ejeta G (2008) Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bio Energy Res 1:193–204Google Scholar
  107. Sander JD (2019) Gene editing in sorghum through agrobacterium. Methods Mol Biol 1931:155–168PubMedGoogle Scholar
  108. Sato S, Clemente T, Dweikat I (2004) Identification of an elite sorghum genotype with high in vitro performance capacity. In Vitro Cell Dev Biol Plant 40(1):57–60Google Scholar
  109. Shakoor N, Nair R, Crasta O, Morris G, Feltus A, Kresovich S (2014) A Sorghum bicolor expression atlas reveals dynamic genotype-specific expression profiles for vegetative tissues of grain, sweet and bioenergy sorghums. BMC Plant Biol 14(1):1–14Google Scholar
  110. Sharma G, Jotwani M, Rana B, Rao N (1977) Resistance to the sorghum shoot-fly, Atherigona soccata (Rondani) and its genetic analysis. J Entomol Res 1:1–12Google Scholar
  111. Singh RK, Shrotria PK (2008) Combining ability analysis for forage yield and its components in forage sorghum [Sorghum bicolor (L.) Moench]. Forage Res 34(2):79–82Google Scholar
  112. Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology, and production. John Wiley and Sons, New York, NY, p 840Google Scholar
  113. Stephens JC (1937) Male-sterility in sorghum: its possible utilization in production of hybrid seed. J Amer Soc Agron 29:690Google Scholar
  114. Stephens JC, Holland RF (1954) Cytoplasmic male-sterility for hybrid sorghum seed production. Agron J 46(1):20–23Google Scholar
  115. Truong SK, McCormick RF, Morishige DT, Mullet JE (2014) Resolution of genetic map expansion caused by excess heterozygosity in plant recombinant inbred populations. G3 4:1963–1969PubMedGoogle Scholar
  116. Tucker MR, Koltunow AMG (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct Plant Biol 36:490–504Google Scholar
  117. Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013) SNP markers linked to leaf rust and grain mold resistance in sorghum. Mol Breed 32:451–462Google Scholar
  118. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883PubMedPubMedCentralGoogle Scholar
  119. Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants. Chron Bot 13:1–366Google Scholar
  120. Velazco JG, Jordan DR, Mace ES, Hunt CH, Malosetti M, van Eeuwijk FA (2019) Genomic prediction of grain yield and drought-adaptation capacity in sorghum is enhanced by multi-trait analysis. Front Plant Sci 10:1–12Google Scholar
  121. Veyrieras JB, Goffinet B, Charcosset A (2007) Meta QTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49PubMedPubMedCentralGoogle Scholar
  122. Vilas A, Tonapi, Patil JV, Dayakar Rao B, Elangovan M, Venkatesh Bhat B, Raghavendra Rao KV (2011) Sorghum: vision 2030. Directorate of Sorghum Research, Rajendranagar, Hyderabad, p 38Google Scholar
  123. Vinall HN, Edwards RW (1916) New sorghum varieties for the central and southern Great Plains. US Dept Agri Bull 383Google Scholar
  124. Vinall HN, Stephens JC, Martin JH (1936) Identification, history and distribution of common sorghum varieties. US Dept Agric Bull 506:1–102Google Scholar
  125. Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath RM, Seetharama N, Patil JV (2014) Production and evaluation of trans-genic sorghum for resistance to stem borer. In Vitro Cell Dev Biol Plant 50:176–189Google Scholar
  126. Wanga MA, Kumar AA, Kangueehi GN, Shimelis H, Horn LN, Sarsu F, Andowa JFN (2018) Breeding sorghum using induced mutations: future prospect for Namibia. Am J Plant Sci 9(13):2696–2707Google Scholar
  127. Weber S (1998) Out of Africa: the initial impact of millets in South Asia. Curr Anthropol 39(2):267–274Google Scholar
  128. Webster OJ (1965) Genetic studies in Sorghum Vulgare (Pers). Crop Sci 5:207Google Scholar
  129. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103PubMedPubMedCentralGoogle Scholar
  130. Xin Z, Wang ML, Burow G, Burke J (2009) An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2(1):10–16Google Scholar
  131. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551PubMedPubMedCentralGoogle Scholar
  132. Zhao J, Perez MBM, Hu J, Fernandez MGS (2016) Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome 2:1–14Google Scholar
  133. Zhao Z, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798PubMedGoogle Scholar
  134. Zhao ZY, Glassman K, Sewalt V, Wang N, Miller M, Chang S, Thompson T, Catron S, Wu E, Bidney D, Kedebe Y (2002) Nutritionally improved transgenic sorghum. In: Vasil IK (ed) Plant biotechnology 2002 and beyond, proceeding of the 10th IAPTC & B congress. Kluwer Academic Publisher, Orlando, FL, pp 413–416Google Scholar
  135. Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • D. Balakrishna
    • 1
    Email author
  • Avinash Singode
    • 2
  • B. Venkatesh Bhat
    • 3
  • Vilas A. Tonapi
    • 4
  1. 1.Plant BiotechnologyICAR-Indian Institute of Millets ResearchHyderabadIndia
  2. 2.Plant BreedingICAR-Indian Institute of Millets ResearchHyderabadIndia
  3. 3.Genetics & CytogeneticsICAR-Indian Institute of Millets ResearchHyderabadIndia
  4. 4.Seed TechnologyICAR-Indian Institute of Millets ResearchHyderabadIndia

Personalised recommendations