Bioinspired Water Desalination and Water Purification Approaches Using Membranes

  • Bharat BhushanEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 299)


As discussed in Chap.  1, 97.5% of water is saline water, therefore water desalination is increasingly important in some parts of the world. However, water desalinization remains an energy intensive process and prohibitively expensive. In addition, water contamination from human activity affects clean water supply. Water purification from all contaminants is important (Brown and Bhushan 2016; Bhushan 2018).


  1. Agre, P., Sasaki, S., and Chrispeels, M. J. (1993), “Aquaporins: a Family of Water Channel Proteins,” Am. J. Physiol. 265, F461.Google Scholar
  2. Bhushan, B. (2018), Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, third ed., Springer International, Cham, Switzerland.Google Scholar
  3. Bhushan, B. (2019), “Bioinspired Oil-water Seperation Approaches for Oil Spill Clean-up and Water Purification,” Phil. Trans. R. Soc. A 377, 20190120.Google Scholar
  4. Brown, P. S., and Bhushan, B. (2015), “Bioinspired, Roughness-Induced, Water and Oil Super-philic and Super-phobic Coatings Prepared by Adaptable Layer-by-Layer Technique,” Sci. Rep. 5, 14030.Google Scholar
  5. Brown, P. S. and Bhushan, B. (2016), “Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil,” Phil. Trans. R. Soc. A 374, 20160135.Google Scholar
  6. Cazacu, A. Tong, C., van der Lee, A., Fyles, T. M., and Barboiu, M. (2006), “Columnar Self-Assembled Ureido Crown Ethers:  An Example of Ion-Channel Organization in Lipid Bilayers,” J. Am. Chem. Soc. 128, 9541–9548.Google Scholar
  7. Cavallo, F. and Lagally, M. G. (2010), “Semiconductors Turn Soft: Inorganic Nanomembranes,” Soft Matter 6, 439–455.Google Scholar
  8. Crini, G. (2005), “Recent Developments in Polysaccharide-based Materials used as Adsorbents in Wastewater Treatment,” Prog. Polym. Sci. 30, 38–70.Google Scholar
  9. Corry, B. (2008), “Designing Carbon Nanotube Membranes for Efficient Water Desalination,” J. Phys. Chem. B 112, 1427–1434.Google Scholar
  10. Davis, M. E. (2002), “Ordered Porous Materials for Emerging Applications,” Nature 417, 813–820.Google Scholar
  11. Davis, S. A., Burkett, S. L., Mendelson, N. H., and Mann, S. (1997), “Bacterial Templating of Ordered Macrostructures in Silica and Silica-surfactant Mesophases,” Nature 385, 420–423.Google Scholar
  12. Elimelech, M. and Phillip, W. A. (2011), “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science 333, 712–717.Google Scholar
  13. Esmanski, A. and Ozin, G. A. (2009), “Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries,” Adv. Funct. Mater. 19, 1999–2010.Google Scholar
  14. Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2008), “Ion exclusion by sub-2-nm carbon nanotube pores,” Proc. Natl. Acad. Sci. 105, 17250–17255.Google Scholar
  15. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993), “Self-assembling Organic Nanotubes Based on a Cyclic Peptide Architecture,” Nature 366, 324–327.Google Scholar
  16. Habel, J., Hansen, M., Kynde, S., Larsen, N., Midtgaard, S. R., Jensen, G. V., Bomholt, J., Ogbonna, A., Almdal, K., Schulz, A., and Hélix-Nielsen, C. (2015), “Aquaporin-based Biomimetic Polymeric Membranes: Approaches and Challenges,” Membranes 5, 307–351.Google Scholar
  17. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2006), “Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes,” Science 312, 1034–1037.Google Scholar
  18. Hourani, R., Zhang, C., van der Weegen, R., Ruiz, L., Li, C., Keten, S., Helms, B. A., and Xu, T. (2011), “Processable Cyclic Peptide Nanotubes with Tunable Interiors,” J. Am. Chem. Soc. 133, 15296–15299.Google Scholar
  19. Hummer, G., Rasaiah, J. C., and Noworyta, J. P. (2001), “Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube,” Nature 414, 188–190.Google Scholar
  20. Lee, K. P., Arnot, T. C., and Mattia, D. (2011), “A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential,” J. Membr. Sci. 370, 1–22.Google Scholar
  21. Li, F., Kong, W., Bhushan, B., Zhao, X., and Pan, Y. (2019), “Ultraviolet–driven Switchable Superliquiphobic/superliquiphilic Coating for Separation of Oil-water Mixtures and Emulsions and Water Purification,” J. Colloid Interface Sci. 557, 395–407.Google Scholar
  22. Liu, G. and Ding, J. (1998), “Diblock Thin Films with Densely Hexagonally Packed Nanochannels,” Adv. Mater. 10, 69–71.Google Scholar
  23. Ma, W., Samal, S. K., Liu, Z., Xiong, R., De Smedt, S. C., Bhushan, B., Zhang, Q., Huang, C. (2017), “Dual pH- and Ammonia-vapor-responsive Electrospun Nanofibrous Membranes for Oil-water Separations,” J. Membr. Sci. 537, 128–139.Google Scholar
  24. Negin, S., Daschbach, M. M., Kulikov, O. V., Rath, N., and Gokel, G. W. (2011), “Pore Formation in Phospholipid Bilayers by Branched-Chain Pyrogallol[4]arenes,” J. Am. Chem. Soc. 133, 3234–3237.Google Scholar
  25. Ogasawara, W., Shenton, W., Davis, S. A., and Mann, S. (2000), “Template Mineralization of Ordered Macroporous Chitin–Silica Composites Using a Cuttlebone-Derived Organic Matrix,” Chem. Mater. 12, 2835–2837.Google Scholar
  26. Peinemann, K.-V., Abetz, V., and Simon, P. F. W. (2007). “Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation,” Nat. Mater. 6, 992–996.Google Scholar
  27. Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J., Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., Duan, H., Magonov, S. N., and Vinogradov, S. A. (2004), “Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores,” Nature 430, 764–768.Google Scholar
  28. Percec, V., Dulcey, A. E., Peterca, M., Adelman, P., Samant, R., Balagurusamy, V. S. K., and Heiney, P. A. (2007), “Helical Pores Self-Assembled from Homochiral Dendritic Dipeptides Based on l-Tyr and Nonpolar α-Amino Acids,” J. Am. Chem. Soc. 129, 5992–6002.Google Scholar
  29. Phillip, W. A., Hillmyer, M. A., Cussler, E. L. (2010), “Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation,” Macromolecules 43, 7763–7770.Google Scholar
  30. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., Perry, R. (1992), “Low-cost Adsorbents for Waste and Waste-water Treatment–a Review,” Sci. Total Environ. 116, 31–52.Google Scholar
  31. Sengur-Tasdemir, R., Aydin, S., Turken, T., Genceli, E. A., and Koyuncu, I. (2016), “Biomimetic Approaches for Membrane Technologies,” Sep. Purif. Rev. 45, 122–140.Google Scholar
  32. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., and Mayes, A. M. (2008), “Science and Technology for Water Purification in the Coming Decades,” Nature 452, 301–310.Google Scholar
  33. Shin, Y., Liu, J., Chang, J. H., Nie, Z., and Exarhos, G. J. (2001), “Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures,” Adv. Mater. 13, 728–732.Google Scholar
  34. Shin, Y., Wang, L.-Q., Chang, J. H., Samuels, W. D., and Exarhos, G. J. (2003), “Morphology Control of Hierarchically Ordered Ceramic Materials Prepared by Surfactant-directed Sol-gel Mineralization of Wood Cellular Structures,” Studies in Surface Science and Catalysis 146, 447–451.Google Scholar
  35. Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., and Ajayan, P. M. (2004), “Carbon Nanotube Filters,” Nat. Mater. 3, 610–614.Google Scholar
  36. Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., and Mahurin, S. M. (2015), “Water Desalination using Nanoporous Single-layer Graphene,” Nat. Nanotechnol. 10, 459–464.Google Scholar
  37. Taguchi, A. and Schüth, F. (2005), “Ordered Mesoporous Materials in Catalysis,” Micropor. Mesopor. Mater. 77, 1–45.Google Scholar
  38. Verkman, A. S., Anderson, M. O., and Papadopoulos, M. C. (2014), “Aquaporins: Important but Elusive Drug Targets,” Nat. Rev. Drug Discov. 13, 259–277.Google Scholar
  39. Wang, S. and Peng, Y. (2010), “Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment,” Chem. Eng. J. 156, 11–24.Google Scholar
  40. Yang, D., Qi, L., and Ma, J. (2002), “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater. 14, 1543–1546.Google Scholar
  41. Zhang, B., Davis, S. A., and Mann, S. (2002), “Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films,” Chem. Mater. 14, 1369–1375.Google Scholar
  42. Zhao, Y. Qiu, C., Li, X., Vararattanavech, A. Shen, W. Torres, J., Hélix-Nielsen, C., Wang, R., Hu, X., Fane, A. G., and Tang, C. Y. (2012), “Synthesis of Robust and High-performance Aquaporin-based Biomimetic Membranes by Interfacial Polymerization-membrane Preparation and RO Performance Characterization,” J. Membr. Sci. 423–424, 422–428.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringOhio State UniversityColumbusUSA

Personalised recommendations