Molecular Biology of Biliopancreatic Lesions

  • Michela Visani
  • Giorgia Acquaviva
  • Annalisa Pession
  • Giovanni Tallini
  • Dario de BiaseEmail author


Tumorigenesis of biliopancreatic lesions is linked to specific alterations in key genes. Pancreatic neoplasms are well characterized at the genomic level. For example, exome and genome sequencing analyses revealed that pancreatic adenonocarcinomas are characterized by mutations manly in KRAS, TP53, CDKN2A/p16, and SMAD4 genes. Nevertheless, the pre-operative diagnosis and the management of patients with biliopancreatic lesion are still a clinical challenge, involving not only the endoscopic ultrasound–guided fine-needle aspiration procedure but also the appropriate biomolecular assessment of these lesions. The aim of the present chapter is to provide an overview of the current knowledge of the biology of biliopancreatic lesions as detected by molecular techniques.


Biliopancreatic lesions Molecular alterations Pancreas Pancreatic adenocarcinoma KRAS Sequencing 


  1. 1.
    Dumonceau JM, Polkowski M, et al. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy. 2011;43(10):897–912.PubMedGoogle Scholar
  2. 2.
    Hong SK, Loren DE, et al. Targeted cyst wall puncture and aspiration during EUS-FNA increases the diagnostic yield of premalignant and malignant pancreatic cysts. Gastrointest Endosc. 2012;75(4):775–82.PubMedGoogle Scholar
  3. 3.
    Jenssen C, Hocke M, et al. EFSUMB Guidelines on Interventional Ultrasound (INVUS), Part IV—EUS-guided interventions: general aspects and EUS-guided sampling (long version). Ultraschall Med. 2016;37(2):E33–76.PubMedGoogle Scholar
  4. 4.
    Varadarajulu S, Fockens P, et al. Best practices in endoscopic ultrasound-guided fine-needle aspiration. Clin Gastroenterol Hepatol. 2012;10(7):697–703.PubMedGoogle Scholar
  5. 5.
    Ducreux M, Cuhna AS, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v56–68.PubMedGoogle Scholar
  6. 6.
    Jones S, Zhang X, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang L, Tsutsumi S, et al. Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res. 2012;22(2):208–19.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Biankin AV, Waddell N, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bailey P, Chang DK, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.PubMedGoogle Scholar
  10. 10.
    Waddell N, Pajic M, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Witkiewicz AK, McMillan EA, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hruban RH, van Mansfeld AD, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol. 1993;143(2):545–54.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kanda M, Matthaei H, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142(4):730–3.. e739PubMedPubMedCentralGoogle Scholar
  14. 14.
    Guerra C, Schuhmacher AJ, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hingorani SR, Petricoin EF, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.PubMedGoogle Scholar
  16. 16.
    Morris JP IV, Wang SC, et al. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10(10):683–95.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pylayeva-Gupta Y, Grabocka E, et al. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Seidler B, Schmidt A, et al. A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc Natl Acad Sci U S A. 2008;105(29):10137–42.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Almoguera C, Shibata D, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.PubMedGoogle Scholar
  20. 20.
    de Biase D, Visani M, et al. Next generation sequencing improves the accuracy of KRAS mutation analysis in endoscopic ultrasound fine needle aspiration pancreatic lesions. PLoS One. 2014;9(2):e87651.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gormally E, Caboux E, et al. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res. 2007;635(2-3):105–17.PubMedGoogle Scholar
  22. 22.
    Visani M, de Biase D, et al. Multiple KRAS mutations in pancreatic adenocarcinoma: molecular features of neoplastic clones indicate the selection of divergent populations of tumor cells. Int J Surg Pathol. 2013;21(6):546–52.PubMedGoogle Scholar
  23. 23.
    Bournet B, Selves J, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with a KRAS mutation assay using allelic discrimination improves the diagnosis of pancreatic cancer. J Clin Gastroenterol. 2015;49(1):50–6.PubMedGoogle Scholar
  24. 24.
    Bournet B, Souque A, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with KRAS mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy. 2009;41(6):552–7.PubMedGoogle Scholar
  25. 25.
    Ginesta MM, Mora J, et al. Genetic and epigenetic markers in the evaluation of pancreatic masses. J Clin Pathol. 2013;66(3):192–7.PubMedGoogle Scholar
  26. 26.
    Maluf-Filho F, Kumar A, et al. Kras mutation analysis of fine needle aspirate under EUS guidance facilitates risk stratification of patients with pancreatic mass. J Clin Gastroenterol. 2007;41(10):906–10.PubMedGoogle Scholar
  27. 27.
    Ogura T, Yamao K, et al. Clinical impact of K-ras mutation analysis in EUS-guided FNA specimens from pancreatic masses. Gastrointest Endosc. 2012;75(4):769–74.PubMedGoogle Scholar
  28. 28.
    Pellise M, Castells A, et al. Clinical usefulness of KRAS mutational analysis in the diagnosis of pancreatic adenocarcinoma by means of endosonography-guided fine-needle aspiration biopsy. Aliment Pharmacol Ther. 2003;17(10):1299–307.PubMedGoogle Scholar
  29. 29.
    Tada M, Komatsu Y, et al. Quantitative analysis of K-ras gene mutation in pancreatic tissue obtained by endoscopic ultrasonography-guided fine needle aspiration: clinical utility for diagnosis of pancreatic tumor. Am J Gastroenterol. 2002;97(9):2263–70.PubMedGoogle Scholar
  30. 30.
    Takahashi K, Yamao K, et al. Differential diagnosis of pancreatic cancer and focal pancreatitis by using EUS-guided FNA. Gastrointest Endosc. 2005;61(1):76–9.PubMedGoogle Scholar
  31. 31.
    Bournet B, Gayral M, et al. Role of endoscopic ultrasound in the molecular diagnosis of pancreatic cancer. World J Gastroenterol. 2014;20(31):10758–68.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Kuboki Y, Shimizu K, et al. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. Pancreas. 2015;44(2):227–35.PubMedGoogle Scholar
  33. 33.
    Rosenbaum MW, Jones M, et al. Next-generation sequencing adds value to the preoperative diagnosis of pancreatic cysts. Cancer. 2017;125(1):41–7.Google Scholar
  34. 34.
    Springer S, Wang Y, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149(6):1501–10.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nikiforova MN, Khalid A, et al. Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: a clinical experience of 618 pancreatic cysts. Mod Pathol. 2013;26(11):1478–87.PubMedGoogle Scholar
  36. 36.
    Dal Molin M, Matthaei H, et al. Clinicopathological correlates of activating GNAS mutations in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg Oncol. 2013;20(12):3802–8.Google Scholar
  37. 37.
    Khalid A, Zahid M, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69(6):1095–102.PubMedGoogle Scholar
  38. 38.
    Van Laethem JL, Bourgeois V, et al. Relative contribution of Ki-ras gene analysis and brush cytology during ERCP for the diagnosis of biliary and pancreatic diseases. Gastrointest Endosc. 1998;47(6):479–85.PubMedGoogle Scholar
  39. 39.
    Gress TM. Molecular diagnosis of pancreatobiliary malignancies in brush cytologies of biliary strictures. Gut. 2004;53(12):1727–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Khalid A, Pal R, et al. Use of microsatellite marker loss of heterozygosity in accurate diagnosis of pancreaticobiliary malignancy from brush cytology samples. Gut. 2004;53(12):1860–5.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Al-Haddad M, DeWitt J, et al. Performance characteristics of molecular (DNA) analysis for the diagnosis of mucinous pancreatic cysts. Gastrointest Endosc. 2014;79(1):79–87.PubMedGoogle Scholar
  42. 42.
    Masetti M, Acquaviva G, et al. Long-term survivors of pancreatic adenocarcinoma show low rates of genetic alterations in KRAS, TP53 and SMAD4. Cancer Biomark. 2018;21(2):323–34.PubMedGoogle Scholar
  43. 43.
    Oshima M, Okano K, et al. Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann Surg. 2013;258(2):336–46.PubMedGoogle Scholar
  44. 44.
    Layfield LJ, Ehya H, et al. Utilization of ancillary studies in the cytologic diagnosis of biliary and pancreatic lesions: the Papanicolaou Society of Cytopathology guidelines for pancreatobiliary cytology. Diagn Cytopathol. 2014;42(4):351–62.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Lohr M, Kloppel G, et al. Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: a meta-analysis. Neoplasia. 2005;7(1):17–23.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Lohr M, Maisonneuve P, et al. K-Ras mutations and benign pancreatic disease. Int J Pancreatol. 2000;27(2):93–103.PubMedGoogle Scholar
  47. 47.
    Luttges J, Reinecke-Luthge A, et al. Duct changes and K-ras mutations in the disease-free pancreas: analysis of type, age relation and spatial distribution. Virchows Arch. 1999;435(5):461–8.PubMedGoogle Scholar
  48. 48.
    Forbes SA, Beare D, et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(Database issue):D805–11.PubMedGoogle Scholar
  49. 49.
    Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.PubMedGoogle Scholar
  50. 50.
    Scarpa A, Capelli P, et al. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol. 1993;142(5):1534–43.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Itoi T, Takei K, et al. Immunohistochemical analysis of p53 and MIB-1 in tissue specimens obtained from endoscopic ultrasonography-guided fine needle aspiration biopsy for the diagnosis of solid pancreatic masses. Oncol Rep. 2005;13(2):229–34.PubMedGoogle Scholar
  52. 52.
    Jahng AW, Reicher S, et al. Staining for p53 and Ki-67 increases the sensitivity of EUS-FNA to detect pancreatic malignancy. World J Gastrointest Endosc. 2010;2(11):362–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Mu DQ, Wang GF, et al. p53 protein expression and CA19.9 values in differential cytological diagnosis of pancreatic cancer complicated with chronic pancreatitis and chronic pancreatitis. World J Gastroenterol. 2003;9(8):1815–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807–21.PubMedGoogle Scholar
  55. 55.
    Hahn SA, Schutte M, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271(5247):350–3.PubMedGoogle Scholar
  56. 56.
    Iacobuzio-Donahue CA, Wilentz RE, et al. Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol. 2000;24(11):1544–8.PubMedGoogle Scholar
  57. 57.
    Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157–88.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Tascilar M, Skinner HG, et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001;7(12):4115–21.PubMedGoogle Scholar
  59. 59.
    Schutte M, Hruban RH, et al. DPC4 gene in various tumor types. Cancer Res. 1996;56(11):2527–30.PubMedGoogle Scholar
  60. 60.
    Blackford A, Serrano OK, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15(14):4674–9.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Singh P, Srinivasan R, et al. SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas. 2012;41(4):541–6.PubMedGoogle Scholar
  62. 62.
    Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483–7.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Rubinfeld B, Robbins P, et al. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997;275(5307):1790–2.PubMedGoogle Scholar
  64. 64.
    Tanaka Y, Kato K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61(23):8401–4.PubMedGoogle Scholar
  65. 65.
    Abraham SC, Klimstra DS, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol. 2002;160(4):1361–9.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kubota Y, Kawakami H, et al. CTNNB1 mutational analysis of solid-pseudopapillary neoplasms of the pancreas using endoscopic ultrasound-guided fine-needle aspiration and next-generation deep sequencing. J Gastroenterol. 2015;50(2):203–10.PubMedGoogle Scholar
  67. 67.
    Zeng G, Germinaro M, et al. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia. 2006;8(4):279–89.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wu J, Jiao Y, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011a;108(52):21188–93.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Komatsu H, Tanji E, et al. A GNAS mutation found in pancreatic intraductal papillary mucinous neoplasms induces drastic alterations of gene expression profiles with upregulation of mucin genes. PLoS One. 2014;9(2):e87875.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Amato E, Molin MD, et al. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol. 2014;233(3):217–27.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Furukawa T, Kuboki Y, et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep. 2011;1:161.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Singhi AD, Nikiforova MN, et al. Preoperative GNAS and KRAS testing in the diagnosis of pancreatic mucinous cysts. Clin Cancer Res. 2014;20(16):4381–9.PubMedGoogle Scholar
  73. 73.
    Wu J, Matthaei H, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011b;3(92):92ra66.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Schutte M, Hruban RH, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res. 1997;57(15):3126–30.PubMedGoogle Scholar
  75. 75.
    Bartsch D, Shevlin DW, et al. Frequent mutations of CDKN2 in primary pancreatic adenocarcinomas. Genes Chromosomes Cancer. 1995;14(3):189–95.PubMedGoogle Scholar
  76. 76.
    Caldas C, Hahn SA, et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994;8(1):27–32.PubMedGoogle Scholar
  77. 77.
    Rozenblum E, Schutte M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res. 1997;57(9):1731–4.PubMedGoogle Scholar
  78. 78.
    Bartsch DK, Sina-Frey M, et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg. 2002;236(6):730–7.PubMedPubMedCentralGoogle Scholar
  79. 79.
    McWilliams RR, Wieben ED, et al. Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet. 2011;19(4):472–8.PubMedGoogle Scholar
  80. 80.
    Gerdes B, Ramaswamy A, et al. p16INK4a is a prognostic marker in resected ductal pancreatic cancer: an analysis of p16INK4a, p53, MDM2, an Rb. Ann Surg. 2002;235(1):51–9.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Ohtsubo K, Watanabe H, et al. Abnormalities of tumor suppressor gene p16 in pancreatic carcinoma: immunohistochemical and genetic findings compared with clinicopathological parameters. J Gastroenterol. 2003;38(7):663–71.PubMedGoogle Scholar
  82. 82.
    Abe T, Fukushima N, et al. Genome-wide allelotypes of familial pancreatic adenocarcinomas and familial and sporadic intraductal papillary mucinous neoplasms. Clin Cancer Res. 2007;13(20):6019–25.PubMedGoogle Scholar
  83. 83.
    Forbes SA, Beare D, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):D777–83.PubMedGoogle Scholar
  84. 84.
    Laghi L, Beghelli S, et al. Irrelevance of microsatellite instability in the epidemiology of sporadic pancreatic ductal adenocarcinoma. PLoS One. 2012;7(9):e46002.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Valero V 3rd, Saunders TJ, et al. Reliable detection of somatic mutations in fine needle aspirates of pancreatic cancer with next-generation sequencing: implications for surgical management. Ann Surg. 2016;263(1):153–61.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sato N, Rosty C, et al. STK11/LKB1 Peutz-Jeghers gene inactivation in intraductal papillary-mucinous neoplasms of the pancreas. Am J Pathol. 2001;159(6):2017–22.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Su GH, Hruban RH, et al. Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pancreatic and biliary cancers. Am J Pathol. 1999;154(6):1835–40.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Calhoun ES, Jones JB, et al. BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. Am J Pathol. 2003;163(4):1255–60.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Peng DF, Kanai Y, et al. DNA methylation of multiple tumor-related genes in association with overexpression of DNA methyltransferase 1 (DNMT1) during multistage carcinogenesis of the pancreas. Carcinogenesis. 2006;27(6):1160–8.PubMedGoogle Scholar
  90. 90.
    Hegi ME, Diserens AC, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedGoogle Scholar
  91. 91.
    Moore MJ, Feld R, et al. A phase II study of temozolomide in advanced untreated pancreatic cancer. Invest New Drugs. 1998;16(1):77–9.PubMedGoogle Scholar
  92. 92.
    Azuara D, Ginesta MM, et al. Nanofluidic digital PCR for KRAS mutation detection and quantification in gastrointestinal cancer. Clin Chem. 2012;58(9):1332–41.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michela Visani
    • 1
  • Giorgia Acquaviva
    • 2
  • Annalisa Pession
    • 1
  • Giovanni Tallini
    • 2
  • Dario de Biase
    • 1
    Email author
  1. 1.Department of Pharmacy and Biotechnology (Dipartimento di Farmacia e Biotecnologie)—Molecular Diagnostic UnitAzienda USL di Bologna, University of BolognaBolognaItaly
  2. 2.Department of ExperimentalDiagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di BolognaBolognaItaly

Personalised recommendations