Product Development: State of the Art and Challenges

  • Marcin Relich
Part of the Computational Intelligence Methods and Applications book series (CIMA)


This chapter is concerned with describing product development in terms of a systems approach, product development phases, and portfolio management, including current methods for evaluating the potential of a new product and selecting a portfolio of NPD projects. A literature review indicates the importance of extending current research towards designing an NPD model within a declarative approach.


  1. Al Khalil, M. I. (2002). Selecting the appropriate project delivery method using AHP. International Journal of Project Management, 20(6), 469–474.CrossRefGoogle Scholar
  2. Alzahrani, J. I., & Emsley, M. W. (2013). The impact of contractors’ attributes on construction project success: A post construction evaluation. International Journal of Project Management, 31(2), 313–322.CrossRefGoogle Scholar
  3. Archer, N. P., & Ghasemzadeh, F. (1999). An integrated framework for project portfolio selection. International Journal of Project Management, 17(4), 207–216.CrossRefGoogle Scholar
  4. Archer, N., & Ghasemzadeh, F. (2007). Project portfolio selection and management. In P. Morris & J. Pinto (Eds.), The Wiley guide to project, program & portfolio management (pp. 94–112). Hoboken, NJ: Wiley.Google Scholar
  5. Asosheh, A., Nalchigar, S., & Jamporazmey, M. (2010). Information technology project evaluation: An integrated data envelopment analysis and balanced scorecard approach. Expert Systems with Applications, 37, 5931–5938.CrossRefGoogle Scholar
  6. Badri, M. A., Davis, D., & Davis, D. (2001). A comprehensive 0–1 goal programming model for project selection. International Journal of Project Management, 19(4), 243–252.CrossRefGoogle Scholar
  7. Ben-Arieh, D., & Qian, L. (2003). Activity-based cost management for design and development stage. International Journal of Production Economics, 83(2), 169–183.CrossRefGoogle Scholar
  8. Bhattacharyya, R., Kumar, P., & Kar, S. (2011). Fuzzy R&D portfolio selection of interdependent projects. Computers & Mathematics with Applications, 62(10), 3857–3870.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Blau, G. E., Pekny, J. F., Varma, V. A., & Bunch, P. R. (2004). Managing a portfolio of interdependent new product candidates in the pharmaceutical industry. Journal of Product Innovation Management, 21(4), 227–245.CrossRefGoogle Scholar
  10. Blichfeldt, B. S., & Eskerod, P. (2008). Project portfolio management–There’s more to it than what management enacts. International Journal of Project Management, 26(4), 357–365.CrossRefGoogle Scholar
  11. Borgonovo, E. (2017). Sensitivity analysis. International series in operations research and management science. Cham: Springer.Google Scholar
  12. Bose, U., Davey, A. M., & Olson, D. L. (1997). Multi-attribute utility methods in group decision-making: past applications and potential for inclusion in GDSS. Omega, 25(6), 691–706.CrossRefGoogle Scholar
  13. Boussabaine, A. H., & Kaka, A. P. (1998). A neural networks approach for cost flow forecasting. Construction Management & Economics, 16(4), 471–479.CrossRefGoogle Scholar
  14. Büyüközkan, G., & Feyzioğlu, O. (2004a). A fuzzy-logic-based decision-making approach for new product development. International Journal of Production Economics, 90(1), 27–45.CrossRefGoogle Scholar
  15. Büyüközkan, G., & Feyzioğlu, O. (2004b). A new approach based on soft computing to accelerate the selection of new product ideas. Computers in Industry, 54(2), 151–167.CrossRefGoogle Scholar
  16. Büyüközkan, G., & Öztürkcan, D. (2010). An integrated analytic approach for Six Sigma project selection. Expert Systems with Applications, 37(8), 5835–5847.CrossRefGoogle Scholar
  17. Carazo, A. F., Gómez, T., Molina, J., Hernández-Díaz, A. G., Guerrero, F. M., & Caballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio selection. Computers & Operations Research, 37(4), 630–639.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Cavalieri, S., Maccarrone, P., & Pinto, R. (2004). Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry. International Journal of Production Economics, 91(2), 165–177.CrossRefGoogle Scholar
  19. Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Systems with Applications, 36(5), 8900–8909.CrossRefGoogle Scholar
  20. Chan, S. L., & Ip, W. H. (2010). A Scorecard-Markov model for new product screening decisions. Industrial Management & Data Systems, 110(7), 971–992.CrossRefGoogle Scholar
  21. Chang, P. T., & Lee, J. H. (2012). A fuzzy DEA and knapsack formulation integrated model for project selection. Computers & Operations Research, 39(1), 112–125.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Cheng, E., & Li, H. (2005). Analytic network process applied to project selection. Journal of Construction Engineering and Management, 131, 459–466.CrossRefGoogle Scholar
  23. Cheng, E., Li, H., & Ho, D. (2002). Analytic hierarchy process (AHP): A defective tool when used improperly. Measuring Business Excellence, 6(4), 33–37.CrossRefGoogle Scholar
  24. Chien, C. F. (2002). A portfolio–evaluation framework for selecting R&D projects. R&D Management, 32(4), 359–368.MathSciNetCrossRefGoogle Scholar
  25. Chu, P., Hsu, Y., & Fehling, M. (1996). A decision support system for project portfolio selection. Computers in Industry, 32(2), 141–149.CrossRefGoogle Scholar
  26. Coldrick, S., Longhurst, P., Ivey, P., & Hannis, J. (2005). An R&D options selection model for investment decisions. Technovation, 25(3), 185–193.CrossRefGoogle Scholar
  27. Cooper, R. G., & Kleinschmidt, E. J. (1986). An investigation into the new product process: Steps, deficiencies, and impact. Journal of Product Innovation Management, 3(2), 71–85.CrossRefGoogle Scholar
  28. Cooper, R. G., Edgett, S. J., & Kleinschmidt, E. J. (1999). New product portfolio management: Practices and performance. Journal of Product Innovation Management, 16(4), 333–351.CrossRefGoogle Scholar
  29. Cooper, R. G., Edgett, S. J., & Kleinschmidt, E. J. (2000). New problems, new solutions: Making portfolio management more effective. Research-Technology Management, 43(2), 18–33.CrossRefGoogle Scholar
  30. Cooper, R., Edgett, S., & Kleinschmidt, E. (2001). Portfolio management for new product development: Results of an industry practices study. R&D Management, 31(4), 361–380.CrossRefGoogle Scholar
  31. Costantino, F., Di Gravio, G., & Nonino, F. (2015). Project selection in project portfolio management: An artificial neural network model based on critical success factors. International Journal of Project Management, 33(8), 1744–1754.CrossRefGoogle Scholar
  32. Costanza, R., Wainger, L., Folke, C., & Mäler, K. G. (1993). Modeling complex ecological economic systems: Toward an evolutionary, dynamic understanding of people and nature. In Ecosystem management (pp. 148–163). New York: Springer.CrossRefGoogle Scholar
  33. Crawford, M., & Benedetto, A. D. (2011). New products management (10th ed.). New York: McGraw-Hill Education.Google Scholar
  34. De Reyck, B., Degraeve, Z., & Vandenborre, R. (2008). Project options valuation with net present value and decision tree analysis. European Journal of Operational Research, 184(1), 341–355.zbMATHCrossRefGoogle Scholar
  35. Duarte, B. P., & Reis, A. (2006). Developing a projects evaluation system based on multiple attribute value theory. Computers & Operations Research, 33(5), 1488–1504.zbMATHCrossRefGoogle Scholar
  36. Dutra, C. C., Ribeiro, J. L., & de Carvalho, M. M. (2014). An economic–probabilistic model for project selection and prioritization. International Journal of Project Management, 32(6), 1042–1055.CrossRefGoogle Scholar
  37. Eilat, H., Golany, B., & Shtub, A. (2008). R&D project evaluation: An integrated DEA and balanced scorecard approach. Omega, 36, 895–912.CrossRefGoogle Scholar
  38. Elonen, S., & Artto, K. A. (2003). Problems in managing internal development projects in multi-project environments. International Journal of Project Management, 21(6), 395–402.CrossRefGoogle Scholar
  39. Enea, M., & Piazza, T. (2004). Project selection by constrained fuzzy AHP. Fuzzy Optimization and Decision-Making, 3(1), 39–62.zbMATHCrossRefGoogle Scholar
  40. Engwall, M., & Jerbrant, A. (2003). The resource allocation syndrome: the prime challenge of multi-project management? International Journal of Project Management, 21(6), 403–409.CrossRefGoogle Scholar
  41. Ghapanchi, A. H., Tavana, M., Khakbaz, M. H., & Low, G. (2012). A methodology for selecting portfolios of projects with interactions and under uncertainty. International Journal of Project Management, 30(7), 791–803.CrossRefGoogle Scholar
  42. Guerra, M. L., Magni, C. A., & Stefanini, L. (2014). Interval and fuzzy average internal rate of return for investment appraisal. Fuzzy Sets and Systems, 257, 217–241.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Gutjahr, W. J., Katzensteiner, S., Reiter, P., Stummer, C., & Denk, M. (2010). Multi-objective decision analysis for competence-oriented project portfolio selection. European Journal of Operational Research, 205(3), 670–679.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Heidenberger, K., & Stummer, C. (1999). Research and development project selection and resource allocation: a review of quantitative modelling approaches. International Journal of Management Reviews, 1(2), 197–224.CrossRefGoogle Scholar
  45. Heising, W. (2012). The integration of ideation and project portfolio management – A key factor for sustainable success. International Journal of Project Management, 30(5), 582–595.CrossRefGoogle Scholar
  46. Henriksen, A. D., & Traynor, A. J. (1999). A practical R&D project-selection scoring tool. IEEE Transactions on Engineering Management, 46(2), 158–170.CrossRefGoogle Scholar
  47. Heugens, P. P., & van Oosterhout, J. (2001). To boldly go where no man has gone before: integrating cognitive and physical features in scenario studies. Futures, 33(10), 861–872.CrossRefGoogle Scholar
  48. Hsu, Y. G., Tzeng, G. H., & Shyu, J. Z. (2003). Fuzzy multiple criteria selection of government-sponsored frontier technology R&D projects. R&D Management, 33(5), 539–551.CrossRefGoogle Scholar
  49. Huang, X., & Zhao, T. (2014). Project selection and scheduling with uncertain net income and investment cost. Applied Mathematics and Computation, 247, 61–71.MathSciNetzbMATHCrossRefGoogle Scholar
  50. Jin, H., Zhao, J., & Chen, X. (2007). The application of neuro-fuzzy decision tree in optimal selection of technological innovation projects. Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 3, 438–443.CrossRefGoogle Scholar
  51. Jonas, D. (2010). Empowering project portfolio managers: How management involvement impacts project portfolio management performance. International Journal of Project Management, 28(8), 818–831.CrossRefGoogle Scholar
  52. Jung, J. Y. (2002). Manufacturing cost estimation for machined parts based on manufacturing features. Journal of Intelligent Manufacturing, 13(4), 227–238.CrossRefGoogle Scholar
  53. Kaiser, M. G., El Arbi, F., & Ahlemann, F. (2015). Successful project portfolio management beyond project selection techniques: Understanding the role of structural alignment. International Journal of Project Management, 33(1), 126–139.CrossRefGoogle Scholar
  54. Karasakal, E., & Aker, P. (2017). A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem. Omega, 73, 79–92.CrossRefGoogle Scholar
  55. Kerzner, H. (2001). Project management: A systems approach to planning, scheduling, and controlling (7th ed.). New York: Wiley.Google Scholar
  56. Khalili-Damghani, K., Sadi-Nezhad, S., Lotfi, F. H., & Tavana, M. (2013). A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection. Information Sciences, 220, 442–462.CrossRefGoogle Scholar
  57. Kumar, M., Antony, J., & Rae Cho, B. (2009). Project selection and its impact on the successful deployment of six sigma. Business Process Management Journal, 15(5), 669–686.CrossRefGoogle Scholar
  58. Lee, J. W., & Kim, S. H. (2001). An integrated approach for interdependent information system project selection. International Journal of Project Management, 19(2), 111–118.CrossRefGoogle Scholar
  59. Lee, C. F., & Lee, A. C. (Eds.). (2006). Encyclopedia of finance. New York: Springer.Google Scholar
  60. Levine, H. A. (2005). Project portfolio management: A practical guide to selecting projects, managing portfolios, and maximizing benefits. New York: Wiley.Google Scholar
  61. Leyman, P., & Vanhoucke, M. (2016). Payment models and net present value optimization for resource-constrained project scheduling. Computers & Industrial Engineering, 91, 139–153.CrossRefGoogle Scholar
  62. Liberatore, M. J. (1988). An expert support system for R&D project selection. Mathematical and Computer Modelling, 11, 260–265.CrossRefGoogle Scholar
  63. Lin, C. T., & Yang, Y. S. (2015). A linguistic approach to measuring the attractiveness of new products in portfolio selection. Group Decision and Negotiation, 24(1), 145–169.CrossRefGoogle Scholar
  64. Lin, Y. C., & Yeh, J. M. (2001). A fuzzy controlled neural network for screening new product ideas. Journal of Information and Optimization Sciences, 22(1), 91–111.zbMATHCrossRefGoogle Scholar
  65. Linton, J. D., Walsh, S. T., & Morabito, J. (2002). Analysis, ranking and selection of R&D projects in a portfolio. R&D Management, 32(2), 139–148.CrossRefGoogle Scholar
  66. Loch, C. H., & Kavadias, S. (2002). Dynamic portfolio selection of NPD programs using marginal returns. Management Science, 48(10), 1227–1241.zbMATHCrossRefGoogle Scholar
  67. Lopes, Y. G., & de Almeida, A. T. (2015). Assessment of synergies for selecting a project portfolio in the petroleum industry based on a multi-attribute utility function. Journal of Petroleum Science and Engineering, 126, 131–140.CrossRefGoogle Scholar
  68. Mavrotas, G., Diakoulaki, D., & Kourentzis, A. (2008). Selection among ranked projects under segmentation, policy and logical constraints. European Journal of Operational Research, 187(1), 177–192.zbMATHCrossRefGoogle Scholar
  69. Meade, L. M., & Presley, A. (2002). R&D project selection using the analytic network process. IEEE Transactions on Engineering Management, 49(1), 59–66.CrossRefGoogle Scholar
  70. Medaglia, A. L., Graves, S. B., & Ringuest, J. L. (2007). A multiobjective evolutionary approach for linearly constrained project selection under uncertainty. European Journal of Operational Research, 179(3), 869–894.zbMATHCrossRefGoogle Scholar
  71. Meskendahl, S. (2010). The influence of business strategy on project portfolio management and its success – A conceptual framework. International Journal of Project Management, 28(8), 807–817.CrossRefGoogle Scholar
  72. Milis, K., & Mercken, R. (2004). The use of the balanced scorecard for the evaluation of information and communication technology projects. International Journal of Project Management, 22(2), 87–97.CrossRefGoogle Scholar
  73. Mohanty, R. P., Agarwal, R., Choudhury, A. K., & Tiwari, M. K. (2005). A fuzzy ANP-based approach to R&D project selection: a case study. International Journal of Production Research, 43(24), 5199–5216.zbMATHCrossRefGoogle Scholar
  74. Morton, A., Keisler, J. M., & Salo, A. (2016). Multicriteria portfolio decision analysis for project selection. In S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Multiple criteria decision analysis (pp. 1269–1298). New York: Springer.CrossRefGoogle Scholar
  75. Müller, R., Martinsuo, M., & Blomquist, T. (2008). Project portfolio control and portfolio management performance in different contexts. Project Management Journal, 39(3), 28–42.CrossRefGoogle Scholar
  76. Niazi, A., Dai, J. S., Balabani, S., & Seneviratne, L. (2006). Product cost estimation: Technique classification and methodology review. Journal of Manufacturing Science and Engineering, 128, 563–575.CrossRefGoogle Scholar
  77. O’Brien, F. A. (2004). Scenario planning––lessons for practice from teaching and learning. European Journal of Operational Research, 152(3), 709–722.zbMATHCrossRefGoogle Scholar
  78. Parvaneh, F., & El-Sayegh, S. M. (2016). Project selection using the combined approach of AHP and LP. Journal of Financial Management of Property and Construction, 21(1), 39–53.CrossRefGoogle Scholar
  79. Patanakul, P., & Milosevic, D. (2009). The effectiveness in managing a group of multiple projects: Factors of influence and measurement criteria. International Journal of Project Management, 27(3), 216–233.CrossRefGoogle Scholar
  80. Pérez, F., Gómez, T., Caballero, R., & Liern, V. (2018). Project portfolio selection and planning with fuzzy constraints. Technological Forecasting and Social Change, 131, 117–129.CrossRefGoogle Scholar
  81. Poh, K. L., Ang, B. W., & Bai, F. (2001). A comparative analysis of R&D project evaluation methods. R&D Management, 31(1), 63–75.CrossRefGoogle Scholar
  82. Relich, M. (2010a). A decision support system for alternative project choice based on fuzzy neural networks. Management and Production Engineering Review, 1(4), 46–54.Google Scholar
  83. Relich, M. (2010b). Assessment of task duration in investment projects. Management, 14(2), 136–147.Google Scholar
  84. Relich, M. (2015). Identifying relationships between eco-innovation and product success. In P. Golinska & A. Kawa (Eds.), Technology management for sustainable production and logistics (pp. 173–192). Berlin: Springer.CrossRefGoogle Scholar
  85. Relich, M. (2016a). A knowledge-based system for new product portfolio selection. In P. Rozewski, D. Novikov, O. Zaikin, & N. Bakhtadze (Eds.), New frontiers in information and production systems modelling and analysis (pp. 169–187). Cham: Springer.CrossRefGoogle Scholar
  86. Relich, M. (2016b). Portfolio selection of new product projects: A product reliability perspective. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 18(4), 613–620.CrossRefGoogle Scholar
  87. Relich, M., & Pawlewski, P. (2015). A multi-agent system for selecting portfolio of new product development projects. In International Conference on Practical Applications of Agents and Multi-Agent Systems (pp. 102–114). Cham: Springer.Google Scholar
  88. Relich, M., & Pawlewski, P. (2017). A fuzzy weighted average approach for selecting portfolio of new product development projects. Neurocomputing, 231, 19–27.CrossRefGoogle Scholar
  89. Relich, M., Swic, A., & Gola, A. (2015). A knowledge-based approach to product concept screening. In 12th International Conference on Distributed Computing and Artificial Intelligence (pp. 341–348). Cham: Springer.Google Scholar
  90. Shirland, L. E., Jesse, R. R., Thompson, R. L., & Iacovou, C. L. (2003). Determining attribute weights using mathematical programming. Omega, 31(6), 423–437.CrossRefGoogle Scholar
  91. Sun, H., & Ma, T. (2005). A packing-multiple-boxes model for R&D project selection and scheduling. Technovation, 25(11), 1355–1361.CrossRefGoogle Scholar
  92. Tavana, M., Keramatpour, M., Santos-Arteaga, F. J., & Ghorbaniane, E. (2015). A fuzzy hybrid project portfolio selection method using data envelopment analysis, TOPSIS and integer programming. Expert Systems with Applications, 42(22), 8432–8444.CrossRefGoogle Scholar
  93. Thieme, R. J., Song, M., & Calantone, R. J. (2000). Artificial neural network decision support systems for new product development project selection. Journal of Marketing Research, 37(4), 499–507.CrossRefGoogle Scholar
  94. Thiesing, F. M., & Vornberger, O. (1997). Forecasting sales using neural networks. In B. Reusch (Ed.), Computational Intelligence Theory and Applications (pp. 321–328). Berlin: Springer.CrossRefGoogle Scholar
  95. Tian, Q., Ma, J., & Liu, O. (2002). A hybrid knowledge and model system for R&D project selection. Expert Systems with Applications, 23(3), 265–271.CrossRefGoogle Scholar
  96. Tietje, O. (2005). Identification of a small reliable and efficient set of consistent scenarios. European Journal of Operational Research, 162(2), 418–432.MathSciNetzbMATHCrossRefGoogle Scholar
  97. Tohumcu, Z., & Karasakal, E. (2010). R&D project performance evaluation with multiple and interdependent criteria. IEEE Transactions on Engineering Management, 57(4), 620–633.CrossRefGoogle Scholar
  98. Ulrich, K. T., & Eppinger, S. D. (2012). Product design and development (5th ed.). New York: McGraw-Hill.Google Scholar
  99. Verbano, C., & Nosella, A. (2010). Addressing R&D investment decisions: a cross analysis of R&D project selection methods. European Journal of Innovation Management, 13(3), 355–379.CrossRefGoogle Scholar
  100. Vidal, L. A., Marle, F., & Bocquet, J. C. (2011). Measuring project complexity using the Analytic Hierarchy Process. International Journal of Project Management, 29(6), 718–727.CrossRefGoogle Scholar
  101. Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision-making, multiattribute utility theory: Recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349.zbMATHCrossRefGoogle Scholar
  102. Wang, J., & Hwang, W. L. (2007). A fuzzy set approach for R&D portfolio selection using a real options valuation model. Omega, 35(3), 247–257.CrossRefGoogle Scholar
  103. Wiesemann, W., Kuhn, D., & Rustem, B. (2010). Maximizing the net present value of a project under uncertainty. European Journal of Operational Research, 202(2), 356–367.MathSciNetzbMATHCrossRefGoogle Scholar
  104. Yan, H. B., & Ma, T. (2015). A fuzzy group decision-making approach to new product concept screening at the fuzzy front end. International Journal of Production Research, 53(13), 4021–4049.CrossRefGoogle Scholar
  105. Yang, T., & Hsieh, C. H. (2009). Six-Sigma project selection using national quality award criteria and Delphi fuzzy multiple criteria decision-making method. Expert Systems with Applications, 36(4), 7594–7603.CrossRefGoogle Scholar
  106. Yazgan, H. R., Boran, S., & Goztepe, K. (2009). An ERP software selection process with using artificial neural network based on analytic network process approach. Expert Systems with Applications, 36(5), 9214–9222.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Marcin Relich
    • 1
  1. 1.Faculty of Economics and ManagementUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations