Hormonal Responses to Vibration Therapy

  • Eloá Moreira-Marconi
  • Danubia da Cunha de Sá-Caputo
  • Alessandro Sartorio
  • Mario Bernardo-Filho


Mechanical vibrations, largely employed in sports training and clinical practice, are reported to exert stimulatory/inhibitory effects on several hormonal secretions. To date, the mechanisms underlying the effects of vibrations on the endocrine system require to be still clarified. The discordant findings in the literature are probably due to several confounding factors, such as the lack of consistent control conditions, heterogeneous study groups, and different experimental conditions (frequency, peak-to-peak displacement, peak acceleration, work time, rest time, periodicity per week, the number of bouts in a session, number of sessions, acute or cumulative effects, type of the vibrating platform or vibratory devices, posture of the individual on the platform, the time of blood samplings, etc.). The present chapter is aimed to analyze and discuss the main data from the literature on this topic, underlying also the need to understand the mechanisms responsible for the vibrations-dependent effects on the hormonal secretions in a better way. In this respect, further additional studies performed in well-standardized experimental conditions are requested.


Hormonal responses Vibration therapy Whole-body vibration Local vibration Vibratory stimuli 


  1. 1.
    Farwell A, Braverman L. Endocrinology and metabolism. Italy: McGraw-Hill; 2001.Google Scholar
  2. 2.
    Guyton H. Tratado de Fisiologia Médica. 13th ed: Elsevier Editora Ltda, editor. Elsevier Inc; 2017.Google Scholar
  3. 3.
    Charro MA, Aoki MS, Coutts AJ, Araújo RC, Bacurau RF. Hormonal, metabolic and perceptual responses to different resistance training systems. J Sports Med Phys Fitness. 2010;50:229–34.PubMedGoogle Scholar
  4. 4.
    Pamukoff DN, Ryan ED, Troy BJ. The acute effects of local muscle vibration frequency on peak torque, rate of torque development, and EMG activity. J Electromyogr Kinesiol. 2014;24:888–94.PubMedGoogle Scholar
  5. 5.
    Elmantaser M, McMillan M, Smith K, Khanna S, Chantler D, Panarelli M, et al. A comparison of the effect of two types of vibration exercise on the endocrine and musculoskeletal system. J Musculoskelet Neuronal Interact. 2012;12:144–54.PubMedGoogle Scholar
  6. 6.
    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sport Med. 2005;35:339–61.Google Scholar
  7. 7.
    Xu J, Lin X, Cheng KK, Zhong H, Liu M, Zhang G, et al. Metabolic response in rats following electroacupuncture or moxibustion stimulation. Evidence-based Complement Altern Med. 2019;2019:6947471.Google Scholar
  8. 8.
    Ajeena I, Al-Haris N, Al-Allak MM, Sleiman Z, Al-Kefae HN. How transcutaneous electrical nerve stimulation (TENS) improves fertility in healthy women, the role of estradiol hormone. Int J Pharm Res. 2019;11:227–31.Google Scholar
  9. 9.
    Field T, Hernandez-Reif M, Diego M, Schanberg S, Kuhn C. Cortisol decreases and serotonin and dopamine increase following massage therapy. Int J Neurosci. 2005;115:1397–413.PubMedGoogle Scholar
  10. 10.
    Buttagat V, Eungpinichpong W, Chatchawan U, Kharmwan S. The immediate effects of traditional Thai massage on heart rate variability and stress-related parameters in patients with back pain associated with myofascial trigger points. J Bodyw Mov Ther. 2011;15:15–23.PubMedGoogle Scholar
  11. 11.
    Khalfa S, Dalla Bella S, Roy M, Peretz I, Lupien SJ. Effects of relaxing music on salivary cortisol level after psychological stress. Ann N Y Acad Sci. 2003;999:374–6.PubMedGoogle Scholar
  12. 12.
    Bosco C, Iacovelli M, Tsarpela O, Cardinale M, Bonifazi M, Tihanyi J, et al. Hormonal responses to whole-body vibration in men. Eur J Appl Physiol. 2000;81:449–54.Google Scholar
  13. 13.
    Iodice P, Bellomo RG, Gialluca G, Fanò G, Saggini R. Acute and cumulative effects of focused high-frequency vibrations on the endocrine system and muscle strength. Eur J Appl Physiol. 2011;111:897–904.PubMedGoogle Scholar
  14. 14.
    Souron R, Besson T, Millet GY, Lapole T. Acute and chronic neuromuscular adaptations to local vibration training. Eur J Appl Physiol. 2017;117:1939–64.Google Scholar
  15. 15.
    Prisby RD, Lafage-Proust M-H, Malaval L, Belli A, Vico L. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know. Ageing Res Rev. 2008;7:319–29.PubMedGoogle Scholar
  16. 16.
    Erskine J, Smillie I, Leiper J, Ball D, Cardinale M. Neuromuscular and hormonal responses to a single session of whole body vibration exercise in healthy young men. Clin Physiol Funct Imaging. 2007;27:242–8.PubMedGoogle Scholar
  17. 17.
    Rittweger J. Vibration as an exercise modality: How it may work, and what its potential might be. Eur J Appl Physiol. 2010;108:877–904.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Morel DS, CDF D, Moreira-Marconi E, Brandao-Sobrinho-Neto S, Paineiras-Domingos LL, Souza PL, et al. Relevance of whole body vibration exercise in sport: a short review with soccer, diver and combat sport. African J Tradit Complement Altern Med. 2017;14:19–27.Google Scholar
  19. 19.
    Babraj J, Hawkey A. Improved insulin sensitivity following a short-term whole body vibration intervention. Al Ameen J Med Sci. 2017;10:3–9.Google Scholar
  20. 20.
    Chanou K, Gerodimos V, Karatrantou K, Jamurtas A. Whole-body vibration and rehabilitation of chronic diseases: a review of the literature. J Sport Sci Med. 2012;11:187–200.Google Scholar
  21. 21.
    Serio F, Minosa C, De Luca M, Conte P, Albani G, Peppe A. Focal vibration training (Equistasi(®)) to improve posture stability. A retrospective study in Parkinson’s disease. Sensors (Basel) MDPI. 2019;19:2101.Google Scholar
  22. 22.
    Krajnak K, Waugh S, Sarkisian K. Can blood flow be used to monitor changes in peripheral vascular function that occur in response to segmental vibration exposure? J Occup Environ Med. 2019;61:162–7.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Rigamonti AEE, De Col A, Tamini S, Tringali G, De Micheli R, Abbruzzese L, et al. GH responses to whole body vibration alone or in combination with maximal voluntary contractions in obese male adolescents. Growth Horm IGF Res Churchill Livingstone. 2018;42–43:22–7.Google Scholar
  24. 24.
    Kvorning T, Bagger M, Caserotti P, Madsen K. Effects of vibration and resistance training on neuromuscular and hormonal measures. Eur J Appl Physiol. 2006;96:615–25.PubMedGoogle Scholar
  25. 25.
    Sartorio A, Agosti F, De Col A, Marazzi N, Rastelli F, Chiavaroli S, et al. Growth hormone and lactate responses induced by maximal isometric voluntary contractions and whole-body vibrations in healthy subjects. J Endocrinol Investig. 2011;34:216–21.Google Scholar
  26. 26.
    Giunta M, Cardinale M, Agosti F, Patrizi A, Compri E, Rigamonti AE, et al. Growth hormone-releasing effects of whole body vibration alone or combined with squatting plus external load in severely obese female subjects. Obes Facts. 2012;5:567–74.PubMedGoogle Scholar
  27. 27.
    Fricke O, Semler O, Land C, Beccard R, Thoma P, Schoenau E. Hormonal and metabolic responses to whole body vibration in healthy adults. Endocrinologist. 2009;19:24–30.Google Scholar
  28. 28.
    Sartorio A, Lafortuna CL, Maffiuletti NA, Agosti F, Marazzi N, Rastelli F, et al. GH responses to two consecutive bouts of whole body vibration, maximal voluntary contractions or vibration alternated with maximal voluntary contractions administered at 2-h intervals in healthy adults. Growth Hormon IGF Res. 2010;20:416–21.Google Scholar
  29. 29.
    Cai ZY, Chen WC, Wu CM. Acute effects of whole body vibration combined with blood restriction on electromyography amplitude and hormonal responses. Biol Sport. 2018;35:301–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Di Giminiani R, Fabiani L, Baldini G, Cardelli G, Giovannelli A, Tihanyi J. Hormonal and neuromuscular responses to mechanical vibration applied to upper extremity muscles. Alemany M, editor. PLoS One. 2014;9:e111521.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Abercromby AFJ, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Med Sci Sports Exerc. 2007;39:1642–50.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cochrane DJ. Vibration exercise: the potential benefits. Int J Sports Med. 2011;32:75–99.Google Scholar
  33. 33.
    Menicucci D, Piarulli A, Mastorci F, Sebastiani L, Laurino M, Garbella E, et al. Interactions between immune, stress-related hormonal and cardiovascular systems following strenuous physical exercise. Arch Ital Biol. 2013;151:126–36.PubMedGoogle Scholar
  34. 34.
    Mileva KN, Bowtell JL, Kossev AR. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp Physiol. 2009;94:103–16.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ritzmann R, Kramer A, Gruber M, Gollhofer A, Taube W. EMG activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol. 2010;110:143–51.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Santos-Filho SD, Pinto NS, Monteiro MB, Arthur AP, Misssailidis S, Marin PJ, et al. The ageing, the decline of hormones and the whole-body vibration exercises in vibratory platforms: a review and a case report. J Med Med Sci. 2011;2:925–31.Google Scholar
  37. 37.
    Couto B, Silva H, Filho A, da Silveira NS, Ramos M, Szmuchrowski L, et al. Acute effects of resistance training with local vibration. Int J Sports Med. 2013;34:814–9.PubMedGoogle Scholar
  38. 38.
    Cardinale M, Soiza RL, Leiper JB, Gibson A, Primrose WR. Hormonal responses to a single session of wholebody vibration exercise in older individuals. Br J Sports Med. 2010;44:284–8.PubMedGoogle Scholar
  39. 39.
    Chen W-C, Wu C-M, Cai Z-Y. Effect of one bout of local vibration exercise with blood flow restriction on neuromuscular and hormonal responses. Physiol Int. 2018;105:166–76.PubMedGoogle Scholar
  40. 40.
    Seco J, Rodríguez-Pérez V, López-Rodríguez AF, Torres-Unda J, Echevarria E, Díez-Alegre MI, et al. Effects of vibration therapy on hormone response and stress in severely disabled patients: a double-blind randomized placebo-controlled clinical trial. Rehabil Nurs. 2015;40:166–78.PubMedGoogle Scholar
  41. 41.
    Ebrahimi A, Eftekhari E, Etemadifar M. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis. Indian J Med Res. 2015;142:450.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Di Loreto C, Ranchelli A, Lucidi P, Murdolo G, Parlanti N, De Cicco A, et al. Effects of whole-body vibration exercise on the endocrine system of healthy men. J Endocrinol Investig. 2004;27:323–7.Google Scholar
  43. 43.
    Goto K, Takamatsu K. Hormone and lipolytic responses to whole body vibration in young men. Jpn J Physiol. 2006;55:279–84.Google Scholar
  44. 44.
    Rittweger J, Mutschelknauss M, Felsenberg D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clin Physiol Funct Imaging. 2003;23:81–6.PubMedGoogle Scholar
  45. 45.
    Chatterjee M, Hatori K, Duyck J, Sasaki K, Naert I, Vandamme K. High-frequency loading positively impacts titanium implant osseointegration in impaired bone. Osteoporos Int. 2014;26:281–90.PubMedGoogle Scholar
  46. 46.
    Hatori K, Camargos GV, Chatterjee M, Faot F, Sasaki K, Duyck J, et al. Single and combined effect of high-frequency loading and bisphosphonate treatment on the bone micro-architecture of ovariectomized rats. Osteoporos Int. 2014;26:303–13.PubMedGoogle Scholar
  47. 47.
    Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 2007;40:1333–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exerc Sport Sci Rev. 2003;31(1):3–7.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Humphries B, Fenning A, Dugan E, Guinane J, MacRae K. Whole-body vibration effects on bone mineral density in women with or without resistance training. Aviat Space Environ Med. 2009;80:1025–31.PubMedGoogle Scholar
  50. 50.
    Ribeiro VGC, Mendonça VA, Souza ALC, Fonseca SF, Camargos ACR, Lage VKS, et al. Inflammatory biomarkers responses after acute whole body vibration in fibromyalgia. Brazilian J Med Biol Res. 2018;51:e6775.Google Scholar
  51. 51.
    Theodorou AA, Gerodimos V, Karatrantou K, Paschalis V, Chanou K, Jamurtas AZ, et al. Acute and chronic whole-body vibration exercise does not induce health-promoting effects on the blood profile. J Hum Kinet. 2015;46:107–18.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Çidem M, Karakoç Y, Ekmekçi H, Küçük SH, Uludaǧ M, Gün K, et al. Effects of whole-body vibration on plasma sclerostin level in healthy women. Turkish J Med Sci. 2014;44:404–10.Google Scholar
  53. 53.
    Alentorn-Geli E, Moras G, Padilla J, Fernández-Solà J, Bennett RM, Lázaro-Haro C, et al. Effect of acute and chronic whole-body vibration exercise on serum insulin-like growth factor-1 levels in women with fibromyalgia. J Altern Complement Med. 2009;15:573–8.PubMedGoogle Scholar
  54. 54.
    Manimmanakorn N, Manimmanakorn A, Phuttharak W, Hamlin MJ. Effects of whole body vibration on glycemic indices and peripheral blood flow in type II diabetic patients. Malaysian J Med Sci. 2017;24:55–63.Google Scholar
  55. 55.
    Behboudi L, Azarbayjani MA, Aghaalinejad H, Salavati M. Effects of aerobic exercise and whole body vibration on glycaemia control in type 2 diabetic males. Asian J Sports Med. 2011;2:83–90.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Huh JY, Mougios V, Skraparlis A, Kabasakalis A, Mantzoros CS. Irisin in response to acute and chronic whole-body vibration exercise in humans. Metabolism. 2014;63:918–21.PubMedGoogle Scholar
  57. 57.
    Martín G, de Saa Y, Da Silva-Grigoletto ME, Vaamonde D, Sarmiento S, García-Manso JM. Medicina del Deporte. Rev Andal Med Deport. 2009;2:1–6.Google Scholar
  58. 58.
    Rajapakse CS, Leonard MB, Kobe EA, Slinger MA, Borges KA, Billig E, et al. The efficacy of low-intensity vibration to improve bone health in patients with end-stage renal disease is highly dependent on compliance and muscle response. Acad Radiol. 2017;24:1332–42.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Nameni F. The testosterone responses to a single session of whole body vibration. World Appl Sci J. 2012;18:803–7.Google Scholar
  60. 60.
    Lapole T, Pérot C. Effects of repeated Achilles tendon vibration on triceps surae force production. J Electromyogr Kinesiol. 2010;20:648–54.PubMedGoogle Scholar
  61. 61.
    Issurin VB. Vibrations and their applications in sport: a review. J Sports Med Phys Fitness. 2005;45:324–36.PubMedGoogle Scholar
  62. 62.
    Rigamonti AE, Haenelt M, Bidlingmaier M, De Col A, Tamini S, Tringali G, et al. Obese adolescents exhibit a constant ratio of GH isoforms after whole body vibration and maximal voluntary contractions. BMC Endocr Disord. 2018;18:96.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Roberge C, Carpentier AC, Langlois M-F, Baillargeon J-P, Ardilouze J-L, Maheux P, et al. Adrenocortical dysregulation as a major player in insulin resistance and onset of obesity. Am J Physiol Metab. 2007;293:E1465–78.Google Scholar
  64. 64.
    Moreira-Marconi E, Moura-Fernandes MC, Lopes-Souza P, Teixeira-Silva Y, Reis-Silva A, Marchon RM, et al. Evaluation of the temperature of posterior lower limbs skin during the whole body vibration measured by infrared thermography: cross-sectional study analysis using linear mixed effect model. PLoS One. 2019;14:e0212512.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Devesa J, Almengló C, Devesa P. Multiple effects of growth hormone in the body: is it really the hormone for growth? Clin Med Insights Endocrinol Diabetes. 2016;9:47–71.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sattler FR. Growth hormone in the aging male. Best Pract Res Clin Endocrinol Metab. 2013;27:541–55.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kanaley JA, Weltman JY, Pieper KS, Weltman A, Hartman ML. Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab. 2001;86:2881–9.PubMedGoogle Scholar
  68. 68.
    Paineiras-Domingos LL, DDC S-C, Moreira-Marconi E, Morel DS, da Fontoura Dionello C, Sousa-Gonçalves CR, et al. Can whole body vibration exercises affect growth hormone concentration? A systematic review. Growth Factors. 2017;35:189–200.PubMedGoogle Scholar
  69. 69.
    Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature. 2003;424:389.PubMedGoogle Scholar
  70. 70.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. Obstet Gynecol Surv. 2001;344:1434–41.Google Scholar
  71. 71.
    Borba VZC, Mañas NCP. The use of PTH in the treatment of osteoporosis. Arq Bras Endocrinol Metabol ABE&M. 2010;54:213–9.Google Scholar
  72. 72.
    Mora S, Gilsanz V. Establishment of peak bone mass. Endocrinol Metab Clin N Am. 2003;32:39–63.Google Scholar
  73. 73.
    Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone. 2006;39:1059–66.PubMedGoogle Scholar
  74. 74.
    Judex S, Donahue LR, Rubin C. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton. FASEB J. 2002;16:1280–2.PubMedGoogle Scholar
  75. 75.
    Rubin CT, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19:343–51.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Judex S, Boyd S, Quin YX, Turner S, Ye K, Müller R, et al. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann Biomed Eng. 2003;31:12–20.PubMedGoogle Scholar
  77. 77.
    Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19:360–9.PubMedGoogle Scholar
  78. 78.
    Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab. 2010;95:1991–7.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283:5866–75.PubMedGoogle Scholar
  80. 80.
    Kirby M, Hackett G, Ramachandran S. Testosterone and the heart. Eur Cardiol Rev. 2019;14:103–10.Google Scholar
  81. 81.
    Ahtiainen JP, Pakarinen A, Kraemer WJ, Häkkinen K. Acute hormonal and neuromuscular responses and recovery to forced vs. maximum repetitions multiple resistance exercises. Int J Sports Med. 2003;24:410–8.PubMedGoogle Scholar
  82. 82.
    Schwab R, Johnson GO, Housh TJ, JE KI, Weir JP. Acute effects of different intensities of weight lifting on serum testosterone. Med Sci Sport Exerc. 1993;25(12):1381–5.Google Scholar
  83. 83.
    Cardinale M, Rittweger J. Vibration exercise makes your muscles and bones stronger: fact or fiction? J Br Menopause Soc. 2006;12:12–8.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Tsuchiya Y, Ando D, Takamatsu K, Goto K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism. 2015;64:1042–50.PubMedGoogle Scholar
  85. 85.
    Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Nygaard H, Slettaløkken G, Vegge G, Hollan I, Whist JE, Strand T, et al. Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS One. 2015;10:e0121367.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423:762–9.PubMedGoogle Scholar
  88. 88.
    Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Hear Fail. 2010;3:185–94.Google Scholar
  89. 89.
    Luo Y, Liu M. Adiponectin: a versatile player of innate immunity. J Mol Cell Biol. 2016;8:120–8.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, Tilg H, Patsch JR. Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem Biophys Res Commun. 2003;309:286–90.PubMedGoogle Scholar
  91. 91.
    Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005;174:5789–95.PubMedGoogle Scholar
  92. 92.
    Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68:437–46.PubMedGoogle Scholar
  93. 93.
    Knerr I, Herzog D, Rauh M, Rascher W, Horbach T. Leptin and ghrelin expression in adipose tissues and serum levels in gastric banding patients. Eur J Clin Investig. 2006;36:389–94.Google Scholar
  94. 94.
    Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001;60:349–56.PubMedGoogle Scholar
  95. 95.
    Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004;114:57–66.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Rigamonti AE, Bollati V, Pergoli L, Iodice S, De Col A, Tamini S, et al. Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int J Obes Nature Publishing Group. 2019:1–11. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Eloá Moreira-Marconi
    • 1
    • 2
  • Danubia da Cunha de Sá-Caputo
    • 2
    • 3
  • Alessandro Sartorio
    • 4
  • Mario Bernardo-Filho
    • 5
  1. 1.Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Vibrações Mecânicas e Práticas Integrativas – LAVIMPI, Instituto Biologia Roberto Alcântara Gomes and Policlínica Piquet Carneiro, Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Curso de Fisioterapia, Faculdade Bezerra de AraújoRio de JaneiroBrazil
  4. 4.Istituto Auxologico Italiano, IRCCS, Division of Metabolic Diseases and Auxology & Experimental Laboratory for Auxo-endocrinologica ResearchVerbaniaItaly
  5. 5.Departamento de Biofísica e BiometriaLaboratório de Vibrações Mecânicas e Práticas Integrativas – Instituto de Biologia Roberto Alcantara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations