Using Whole-Body Vibration for Countermeasure Exercise

  • Patrick J. OwenEmail author
  • Daniel L. Belavy
  • Jörn Rittweger


Whole-body vibration exercise has been tested as a countermeasure against deterioration of body systems in spaceflight simulation (bed rest). The first Berlin BedRest Study demonstrated that resistive vibration exercise (RVE) can reduce muscle loss, prevent muscle weakness, prevent bone loss, and ameliorate pain during post–bed rest recovery as well as prevent or reduce changes in other body systems. A limitation of this study was the inability to determine the contribution of WBV in addition to resistance exercise (RE). The second Berlin BedRest Study showed that adding WBV to RE resulted in better efficacy to prevent bone loss, whereas RE and RVE were equivocal in reducing or preventing muscle atrophy. There was some evidence of an additional effect of WBV in modulating body composition changes when added to RE. Successful countermeasure exercise with WBV is possible when performed vigorously, i.e. with large loading force, and with more than three exercise sessions per week.


Spaceflight Bed rest De-conditioning Physical therapy 


  1. 1.
    Kakurin LI, Kuzmin MP, Matsnev EI, Mikhailov VM. Physiological effects induced by antiorthostatic hypokinesia. Life Sci Space Res. 1976;14:101–8.PubMedGoogle Scholar
  2. 2.
    Kakurin LI, Lobachik VI, Mikhailov VM, Senkevich YA. Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med. 1976;47(10):1083–6.PubMedGoogle Scholar
  3. 3.
    Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol. 2007;101(2):143–94.PubMedGoogle Scholar
  4. 4.
    LeBlanc A, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E. Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol. 1992;73(5):2172.PubMedGoogle Scholar
  5. 5.
    LeBlanc A, Lin C, Shackelford L, Sinitsyn V, Evans H, Belichenko O, et al. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol. 2000;89(6):2158–64.PubMedGoogle Scholar
  6. 6.
    Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–11.PubMedGoogle Scholar
  7. 7.
    Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, et al. Muscle atrophy and bone loss after 90 days of bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone. 2005;36(6):1019–29.PubMedGoogle Scholar
  8. 8.
    Convertino VA. Fluid shifts and hydration state: effects of long-term exercise. Can J Sport Sci. 1987;12(Suppl 1):136S–9S.PubMedGoogle Scholar
  9. 9.
    Convertino VA. Blood volume response to physical activity and inactivity. Am J Med Sci. 2007;334(1):72–9.PubMedGoogle Scholar
  10. 10.
    Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–69.PubMedGoogle Scholar
  11. 11.
    Laurie SS, Macias BR, Dunn JT, Young M, Stern C, Lee SMC, et al. Optic disc edema after 30 days of strict head-down tilt bed rest. Ophthalmology. 2019;126(3):467–8.PubMedGoogle Scholar
  12. 12.
    Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985). 2016;120(8):891–903.Google Scholar
  13. 13.
    Jorgensen L, Jacobsen BK. Changes in muscle mass, fat mass, and bone mineral content in the legs after stroke: a 1 year prospective study. Bone. 2001;28(6):655.PubMedGoogle Scholar
  14. 14.
    Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, et al. Osteoporosis after spinal cord injury. J OrthopRes. 1992;10(3):371.Google Scholar
  15. 15.
    Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab. 1998;83(2):415.PubMedGoogle Scholar
  16. 16.
    Kjaer M, Pott F, Mohr T, Linkis P, Tornoe P, Secher NH. Heart rate during exercise with leg vascular occlusion in spinal cord – injured humans. J Appl Physiol. 1999;86(3):806.PubMedGoogle Scholar
  17. 17.
    Eser P, Frotzler A, Zehnder Y, Schiessl H, Denoth J. Assessment of anthropometric, systemic, and lifestyle factors influencing bone status in the legs of spinal cord injured individuals. Osteoporos Int. 2005;16(1):26.PubMedGoogle Scholar
  18. 18.
    Rittweger J, Gerrits K, Altenburg T, Reeves N, Maganaris CN, de Haan A. Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength. J Musculoskelet Neuronal Interact. 2006;6(3):269–176.PubMedGoogle Scholar
  19. 19.
    Watanabe Y, Ohshima H, Mizuno K, Sekiguchi C, Fukunaga M, Kohri K, et al. Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res. 2004;19(11):1771–8.PubMedGoogle Scholar
  20. 20.
    Shibata S, Perhonen M, Levine BD. Supine cycling plus volume loading prevent cardiovascular deconditioning during bed rest. J Appl Physiol. 2010;108(5):1177–86.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kolegard R, Mekjavic IB, Eiken O. Increased distensibility in dependent veins following prolonged bedrest. Eur J Appl Physiol. 2009;106(4):547–54.PubMedGoogle Scholar
  22. 22.
    Belavy DL, Bansmann PM, Bohme G, Frings-Meuthen P, Heer M, Rittweger J, et al. Changes in intervertebral disc morphology persist 5 mo after 21-day bed rest. J Appl Physiol. 2011;111(5):1304–14.PubMedGoogle Scholar
  23. 23.
    Belavy DL, Armbrecht G, Richardson CA, Felsenberg D, Hides JA. Muscle atrophy and changes in spinal morphology: is the lumbar spine vulnerable after prolonged bed-rest? Spine (Phila Pa 1976). 2011;36(2):137–45.Google Scholar
  24. 24.
    Eser P, Frotzler A, Zehnder Y, Knecht H, Denoth J, Schiessl H. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone. 2004;34(5):869–80.PubMedGoogle Scholar
  25. 25.
    ESA. Standardization of bed rest study conditions (version 1.5); ESTEC contract number 20187/06/NL/VJ. 2009.Google Scholar
  26. 26.
    Belavy DL, Ohshima H, Bareille MP, Rittweger J, Felsenberg D. Limited effect of fly-wheel and spinal mobilization exercise countermeasures on lumbar spine deconditioning during 90 days of bed-rest in the Toulouse LTBR study. Acta Astronaut. 2011;69:406–19.Google Scholar
  27. 27.
    Armbrecht G, Belavy DL, Backstrom M, Beller G, Alexandre C, Rizzoli R, et al. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J Bone Miner Res. 2011;26(10):2399–410.PubMedGoogle Scholar
  28. 28.
    Falempin M, In-Albon SF. Influence of brief daily tendon vibration on rat soleus muscle in non-weight-bearing situation. J Appl Physiol. 1999;87(1):3–9.PubMedGoogle Scholar
  29. 29.
    Zange J, Mester J, Heer M, Kluge G, Liphardt AM. 20-Hz whole body vibration training fails to counteract the decrease in leg muscle volume caused by 14 days of 6 degrees head down tilt bed rest. Eur J Appl Physiol. 2008;105(2):271–7.PubMedGoogle Scholar
  30. 30.
    Rittweger J, Belavy D, Hunek P, Gast U, Boerst H, Feilcke B, et al. Highly demanding resistive exercise program is tolerated during 56 days of strict bed rest. Int J Sports Med. 2006;27(7):553–9.PubMedGoogle Scholar
  31. 31.
    Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone. 1998;23(4):313–8.PubMedGoogle Scholar
  32. 32.
    Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res. 1998;16(4):482–9.PubMedGoogle Scholar
  33. 33.
    Belavy DL, Miokovic T, Armbrecht G, Rittweger J, Felsenberg D. Resistive vibration exercise reduces lower limb muscle atrophy during 56-day bed-rest. J Musculoskelet Neuronal Interact. 2009;9(4):225–35.PubMedGoogle Scholar
  34. 34.
    Belavy DL, Bock O, Borst H, Armbrecht G, Gast U, Degner C, et al. The 2nd Berlin BedRest Study: protocol and implementation. J Musculoskelet Neuronal Interact. 2010;10(3):207–19.PubMedGoogle Scholar
  35. 35.
    Baecker N, Frings-Meuthen P, Heer M, Mester J, Liphardt AM. Effects of vibration training on bone metabolism: results from a short-term bed rest study. Eur J Appl Physiol. 2011.Google Scholar
  36. 36.
    Liphardt AM, Mundermann A, Koo S, Backer N, Andriacchi TP, Zange J, et al. Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization. Osteoarthr Cartil. 2009;17(12):1598–603.PubMedGoogle Scholar
  37. 37.
    Miokovic T, Armbrecht G, Gast U, Rawer R, Roth HJ, Runge M, et al. Muscle atrophy, pain, and damage in bed rest reduced by resistive (vibration) exercise. Med Sci Sports Exerc. 2014;46(8):1506–16.PubMedGoogle Scholar
  38. 38.
    Dilani Mendis M, Hides JA, Wilson SJ, Grimaldi A, Belavy DL, Stanton W, et al. Effect of prolonged bed rest on the anterior hip muscles. Gait Posture. 2009;30(4):533–7.PubMedGoogle Scholar
  39. 39.
    Hides JA, Belavy DL, Stanton W, Wilson SJ, Rittweger J, Felsenberg D, et al. Magnetic resonance imaging assessment of trunk muscles during prolonged bed rest. Spine (Phila Pa 1976). 2007;32(15):1687–92.Google Scholar
  40. 40.
    Belavy DL, Hides JA, Wilson SJ, Stanton W, Dimeo FC, Rittweger J, et al. Resistive simulated weightbearing exercise with whole body vibration reduces lumbar spine deconditioning in bed-rest. Spine (Phila Pa 1976). 2008;33(5):E121–31.Google Scholar
  41. 41.
    Mulder ER, Stegeman DF, Gerrits KH, Paalman MI, Rittweger J, Felsenberg D, et al. Strength, size and activation of knee extensors followed during 8 weeks of horizontal bed rest and the influence of a countermeasure. Eur J Appl Physiol. 2006;97(6):706–15.PubMedGoogle Scholar
  42. 42.
    Buehring B, Belavy DL, Michaelis I, Gast U, Felsenberg D, Rittweger J. Changes in lower extremity muscle function after 56 days of bed rest. J Appl Physiol. 2011;111(1):87–94.PubMedGoogle Scholar
  43. 43.
    Mulder ER, Gerrits KH, Kleine BU, Rittweger J, Felsenberg D, de Haan A, et al. High-density surface EMG study on the time course of central nervous and peripheral neuromuscular changes during 8weeks of bed rest with or without resistive vibration exercise. J Electromyogr Kinesiol. 2007;19(2):208–18.PubMedGoogle Scholar
  44. 44.
    Mulder ER, Kuebler WM, Gerrits KH, Rittweger J, Felsenberg D, Stegeman DF, et al. Knee extensor fatigability after bedrest for 8 weeks with and without countermeasure. Muscle Nerve. 2007;36(6):798–806.PubMedGoogle Scholar
  45. 45.
    Belavy DL, Ng JK, Wilson SJ, Armbrecht G, Stegeman DF, Rittweger J, et al. Influence of prolonged bed-rest on spectral and temporal electromyographic motor control characteristics of the superficial lumbo-pelvic musculature. J Electromyogr Kinesiol. 2010;20(1):170–9.PubMedGoogle Scholar
  46. 46.
    Belavy DL, Wilson SJ, Armbrecht G, Rittweger J, Felsenberg D, Richardson CA. Resistive vibration exercise during bed-rest reduces motor control changes in the lumbo-pelvic musculature. J Electromyogr Kinesiol. 2012;22(1):21–30.PubMedGoogle Scholar
  47. 47.
    Blottner D, Salanova M, Puttmann B, Schiffl G, Felsenberg D, Buehring B, et al. Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol. 2006;97(3):261–71.Google Scholar
  48. 48.
    Salanova M, Schiffl G, Rittweger J, Felsenberg D, Blottner D. Ryanodine receptor type-1 (RyR1) expression and protein S-nitrosylation pattern in human soleus myofibres following bed rest and exercise countermeasure. Histochem Cell Biol. 2008;130(1):105–18.PubMedGoogle Scholar
  49. 49.
    Moriggi M, Vasso M, Fania C, Capitanio D, Bonifacio G, Salanova M, et al. Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Proteomics. 2010;10(21):3756–74.PubMedGoogle Scholar
  50. 50.
    Rittweger J, Albracht K, Fluck M, Ruoss S, Brocca L, Longa E, et al. Sarcolab pilot study into skeletal muscleʼs adaptation to long-term spaceflight. NPJ Microgravity. 2018;4:18.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone. 2010;46(1):137–47.Google Scholar
  52. 52.
    Armbrecht G, Belavy DL, Gast U, Bongrazio M, Touby F, Beller G, et al. Resistive vibration exercise attenuates bone and muscle atrophy in 56-days of bed-rest: biochemical markers of bone metabolism. Osteoporos Int. 2010;21(4):595–607.Google Scholar
  53. 53.
    Bleeker MW, De Groot PC, Rongen GA, Rittweger J, Felsenberg D, Smits P, et al. Vascular adaptation to deconditioning and the effect of an exercise countermeasure: results of the Berlin Bed Rest study. J Appl Physiol. 2005;99(4):1293–300.PubMedGoogle Scholar
  54. 54.
    van Duijnhoven NT, Bleeker MW, de Groot PC, Thijssen DH, Felsenberg D, Rittweger J, et al. The effect of bed rest and an exercise countermeasure on leg venous function. Eur J Appl Physiol. 2008;104(6):991–8.PubMedGoogle Scholar
  55. 55.
    Suhr F, Brixius K, de Marees M, Bolck B, Kleinoder H, Achtzehn S, et al. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol. 2007;103(2):474–83.PubMedGoogle Scholar
  56. 56.
    Belavy DL, Seibel MJ, Roth HJ, Armbrecht G, Rittweger J, Felsenberg D. The effects of bed-rest and countermeasure exercise on the endocrine system in male adults: evidence for immobilization-induced reduction in sex hormone-binding globulin levels. J Endocrinol Investig. 2012;35(1):54–62.Google Scholar
  57. 57.
    Belavy DL, Miokovic T, Armbrecht G, Felsenberg D. Hypertrophy in the cervical muscles and thoracic discs in bed rest? J Appl Physiol (1985). 2013;115(5):586–96.Google Scholar
  58. 58.
    Belavy DL, Armbrecht G, Gast U, Richardson CA, Hides JA, Felsenberg D. Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration. J Appl Physiol. 2010;109(6):1801–11.PubMedGoogle Scholar
  59. 59.
    Miokovic T, Armbrecht G, Gast U, Rawer R, Roth HJ, Runge M, et al. Muscle atrophy, pain, and damage in bed rest reduced by resistive (vibration) exercise. Med Sci Sports Exerc. 2014;46(8):1506–16.PubMedGoogle Scholar
  60. 60.
    Belavy DL, Beller G, Armbrecht G, Perschel FH, Fitzner R, Bock O, et al. Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int. 2011;22(5):1581–91.PubMedGoogle Scholar
  61. 61.
    Belavý D, Beller G, Ritter Z, Felsenberg D. Bone structure and density via HR-pQCT in 60d bed-rest, 2-years recovery with and without countermeasures. J Musculoskelet Nueronal Interact. 2011;11(3):215–26.Google Scholar
  62. 62.
    Belavy DL, Baecker N, Armbrecht G, Beller G, Buehlmeier J, Frings-Meuthen P, et al. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab. 2016;34:354–65.PubMedGoogle Scholar
  63. 63.
    Mulder ER, Horstman AM, Stegeman DF, De Haan A, Belavy DL, Miokovic T, et al. Influence of vibration resistance training on knee extensor and plantar flexor size, strength and contractile speed characteristics after 60 days of bed rest. J Appl Physiol. 2009;107:1789–98.PubMedGoogle Scholar
  64. 64.
    Miokovic T, Armbrecht G, Felsenberg D, Belavý DL. Differential atrophy of the postero-lateral hip musculature during prolonged bedrest and the influence of exercise countermeasures. J Appl Physiol. 2011;110(4):926–34.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Belavý DL, Gast U, Felsenberg D. Exercise and transversus abdominis muscle atrophy after 60-d bed rest. Med Sci Sports Exerc. 2017;49(2):238–46.PubMedGoogle Scholar
  66. 66.
    Belavý DL, Armbrecht G, Felsenberg D. Incomplete recovery of lumbar intervertebral discs 2 years after 60-day bed rest. Spine. 2012;37(14):1245–51.PubMedGoogle Scholar
  67. 67.
    Belavý DL, Miokovic T, Armbrecht G, Felsenberg D. Hypertrophy in the cervical muscles and thoracic discs in bed rest? J Appl Physiol. 2013;115(5):586–96.PubMedGoogle Scholar
  68. 68.
    Salanova M, Bortoloso E, Schiffl G, Gutsmann M, Belavy DL, Felsenberg D, et al. Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise. FASEB J. 2011;25(12):4312–25.PubMedGoogle Scholar
  69. 69.
    Gast U, John S, Runge M, Rawer R, Felsenberg D, Belavy DL. Short-duration resistive exercise sustains neuromuscular function after bed rest. Med Sci Sports Exerc. 2012;44(9):1764–72.PubMedGoogle Scholar
  70. 70.
    Belavy DL, Mohlig M, Pfeiffer AF, Felsenberg D, Armbrecht G. Preferential deposition of visceral adipose tissue occurs due to physical inactivity. Int J Obes. 2014;38(11):1478–80.Google Scholar
  71. 71.
    Trudel G, Coletta E, Cameron I, Belavy DL, Lecompte M, Armbrecht G, et al. Resistive exercises, with or without whole body vibration, prevent vertebral marrow fat accumulation during 60 days of head-down tilt bed rest in men. J Appl Physiol (1985). 2012;112(11):1824–31.Google Scholar
  72. 72.
    van Duijnhoven NT, Thijssen DH, Green DJ, Felsenberg D, Belavy DL, Hopman MT. Resistive exercise versus resistive vibration exercise to counteract vascular adaptations to bed rest. J Appl Physiol (1985). 2010;108(1):28–33.Google Scholar
  73. 73.
    van Duijnhoven NT, Green DJ, Felsenberg D, Belavy DL, Hopman MT, Thijssen DH. Impact of bed rest on conduit artery remodeling: effect of exercise countermeasures. Hypertension. 2010;56(2):240–6.PubMedGoogle Scholar
  74. 74.
    Haider T, Gunga HC, Matteucci-Gothe R, Sottara E, Griesmacher A, Belavý DL, et al. Effects of long-term head-down-tilt bed rest and different training regimes on the coagulation system of healthy men. Physiol Rep. 2013;1(6):e00135.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Rauch F, Sievanen H, Boonen S, Cardinale M, Degens H, Felsenberg D, et al. Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact. 2010;10(3):193–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Patrick J. Owen
    • 1
    Email author
  • Daniel L. Belavy
    • 1
  • Jörn Rittweger
    • 2
    • 3
  1. 1.Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneAustralia
  2. 2.Institute of Aerospace Medicine, German Aerospace Center (DLR)CologneGermany
  3. 3.Department of Pediatrics and Adolescent MedicineUniversity of CologneCologneGermany

Personalised recommendations