Application of Vibration Training for Enhancing Bone Strength

  • Debra BembenEmail author


Bone cells respond to mechanical stresses, including the oscillations transmitted during whole-body vibration (WBV). Animal models have documented that bone accrual occurs in response to vibration treatments. Human WBV studies have shown mixed results for the effects on bone mineral density (BMD), bone microarchitecture, and bone strength in postmenopausal women. The WBV protocol characteristics are important as high-magnitude (≥1 g) WBV training using side-alternating platforms resulted in significant effect sizes for lumbar spine and trochanter BMD. WBV training has been shown to improve leg strength and balance and decrease the rate of falls, factors that are important for fracture risk, in addition to bone status. There is insufficient evidence for WBV effects on bone health in women with osteoporosis to recommend it as a therapy. More WBV randomized clinical trials are needed to assess the benefits for bone, muscle function, and fracture risk in osteoporotic populations.


Bone density Bone strength Fracture risk Mechanical loading Osteoporosis 


  1. 1.
    Burr DB, Akkus O. Bone morphology and organization. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego, CA: Elsevier, Inc.; 2014. p. 3–25.CrossRefGoogle Scholar
  2. 2.
    Allen MR, Burr DB. Bone modeling and remodeling. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego, CA: Elsevier, Inc.; 2014. p. 75–90.CrossRefGoogle Scholar
  3. 3.
    Bellido T, Plotkin LI, Bruzzaniti A. Bone cells. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego, CA: Elsevier, Inc.; 2014. p. 27–45.CrossRefGoogle Scholar
  4. 4.
    Kapinas K, Delany AM. MicroRNA biogenesis and regulation of bone remodeling. Arthritis Res Ther. 2011;13(3):220.CrossRefGoogle Scholar
  5. 5.
    Drake MT, Khosla S. The role of sex steroids in the pathogenesis of osteoporosis. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames, IA: John Wiley & Sons, Inc.; 2013. p. 367–75.CrossRefGoogle Scholar
  6. 6.
    Harvey N, Dennison E, Cooper C. The epidemiology of osteoporotic fractures. In: Rosen C, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames, IA: John Wiley & Sons, Inc.; 2013. p. 348–56.CrossRefGoogle Scholar
  7. 7.
    Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12(10):1539–46.CrossRefGoogle Scholar
  8. 8.
    Turner CH. Three rules for bone adaptations to mechanical stimuli. Bone. 1998;23(5):399–407.CrossRefGoogle Scholar
  9. 9.
    Judex S, Rubin CT. Is bone formation induced by high frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact. 2010;10:3–11.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod J. Anabolism: low mechanical signals strengthen long bones. Nature. 2001;412:603–4.CrossRefGoogle Scholar
  11. 11.
    Judex S, Lei X, Daniel H, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 2007;40:1333–9.CrossRefGoogle Scholar
  12. 12.
    Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Malaval L, Vico L. High-acceleration whole-body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice. J Biomech. 2016;49:1899–908.CrossRefGoogle Scholar
  13. 13.
    Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone. 2010;46:1508e1515.CrossRefGoogle Scholar
  14. 14.
    Judex S, Koh TJ, Xie L. Modulation of bone’s sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts. Osteoporos Int. 2015;26:1417–28.CrossRefGoogle Scholar
  15. 15.
    Oliveira LC, Oliveira RG, Pires-Oliveira DA. Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Osteoporos Int. 2016;27(10):2913–33.CrossRefGoogle Scholar
  16. 16.
    Ma C, Liu A, Sun M, Zhu H, Wu H. Effect of whole-body vibration on reduction of bone loss and fall prevention in postmenopausal women: a meta-analysis and systematic review. J Orthop Surg Res. 2016;11:24. Scholar
  17. 17.
    Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004;19(3):343–51.CrossRefGoogle Scholar
  18. 18.
    Leung KS, Li CY, Tse YK, Choy TK, Leung PC, Hung VWY, Chan SY, Leung AHC, Cheung WH. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly-a cluster-randomized controlled trial. Osteoporos Int. 2014;25:1785–95.CrossRefGoogle Scholar
  19. 19.
    Slatkovska L, Alibhai S, Beyenne J, Hu H, Demaras A, Cheung AM. Effect of 12 months of whole-body vibration therapy on bone density and structure in postmenopausal women. Ann Intern Med. 2011;155:668–79.CrossRefGoogle Scholar
  20. 20.
    Liphardt AM, Schipilow J, Hanley DA, Boyd SK. Bone quality in osteopenic postmenopausal women is not improved after 12 months of whole-body vibration training. Osteoporos Int. 2015;26:911–20.CrossRefGoogle Scholar
  21. 21.
    Osawa Y, Oguma Y, Ishii N. The effects of whole-body vibration on muscle strength and power: a meta-analysis. J Musculoskelet Neuronal Interact. 2013;13(3):380–90.PubMedGoogle Scholar
  22. 22.
    Jepsen DB, Thomsen K, Hansen S, Jorgensen NR, Masud T, Ryg J. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis. BMJ Open. 2017;7:e018342. Scholar
  23. 23.
    Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int. 1992;50:306–13.CrossRefGoogle Scholar
  24. 24.
    Rubin C, Pope M, Fritton J, Magnusson M, Hansson T, McLeod K. Transmissibility of 15–35 Hz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level, anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine. 2003;28:2621–7.CrossRefGoogle Scholar
  25. 25.
    Kiel DP, Hannan MT, Barton BA, Bouxsein ML, Sisson E, Lang T, et al. Low magnitude mechanical stimulation to improve bone density in persons of advanced age: a randomized, placebo-controlled trial. J Bone Miner Res. 2015;30(7):1319–28.CrossRefGoogle Scholar
  26. 26.
    Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord. 2006;7:92. Scholar
  27. 27.
    Beck BR, Norling TL. The effect of 8 mos of twice-weekly low- or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am J Phys Med Rehabil. 2010;89:997–1007.CrossRefGoogle Scholar
  28. 28.
    de Oliveira LC, de Oliveira RG, de Almeida Pires-Oliveira DA. Effects of whole-body vibration versus pilates exercise on bone mineral density in postmenopausal women: a randomized and controlled clinical trial. J Geriatr Phys Ther. 2019;42(2):E23–31.CrossRefGoogle Scholar
  29. 29.
    Lai CL, Tseng SY, Chen CN, Liao WC, Wang CH, Lee MC, et al. Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial. Clin Interv Aging. 2013;8:1603–9.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bemben DA, Palmer IJ, Bemben MG, Knehans A. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone. 2010;47:650–6.CrossRefGoogle Scholar
  31. 31.
    Verschueren SMP, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. J Bone Miner Res. 2011;26(1):42–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bone Density Research Laboratory, Department of Health and Exercise ScienceUniversity of OklahomaNormanUSA

Personalised recommendations