Using Twitter Streams for Opinion Mining: A Case Study on Airport Noise

  • Iheb Meddeb
  • Catherine Lavandier
  • Dimitris KotzinosEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1197)


This paper proposes a classification model for opinion mining around airport noise based on techniques such as event detection and sentiment analysis applied on Twitter posts. Tweets are retrieved using the Twitter API either because of location or content. A dataset of preprocessed, with NLP techniques, tweets is manually annotated and then used to train an SVM (Support Vector Machine) classifier in order to extract the relevant ones from the obtained collections. The extracted tweets from the SVM classifier are fed to a lexicon-based classifier to filter out the false relevant and to increase precision. A lexicon-based sentiment classifier is then applied in order to separate positive, negative and neutral tweets. The sentiment classifier uses emoticons, polarity of words with subjective intensity, intensifiers, negation effect with dynamic scope, contrast effect and SWN to detect the sentiment of tweets in a hierarchical manner. The information present in the classified tweets is used for a statistical survey-like study.


Twitter Opinion mining Natural language processing Machine learning Sentiment analysis Text mining 



This work has been partially supported by the ANIMA project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 769627. Website:


  1. 1.
  2. 2.
    Tumblr. Accessed 13 Aug 2018
  3. 3.
    Twitter. Accessed 13 Aug 2018
  4. 4.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, LSM 2011, pp. 30–38. Association for Computational Linguistics, Stroudsburg (2011).
  5. 5.
    Asghar, M.Z., Khan, A., Ahmad, S., Qasim, M., Khan, I.A.: Lexicon-enhanced sentiment analysis framework using rule-based classification scheme. PLoS ONE 12(2), 1–22 (2017). Scholar
  6. 6.
    Civil Aviation Authority: Heathrow airport 2016 summer noise contours and noise action plan. Technical report (2017)Google Scholar
  7. 7.
    Barbot, B., Lavandier, C., Cheminée, P.: Linguistic analysis of field surveys carried out around two French airports. Technical report (2007)Google Scholar
  8. 8.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  9. 9.
    Farooq, U., Mansoor, H., Nongaillard, A., Ouzrout, Y., Qadir, M.A.: Negation handling in sentiment analysis at sentence level. JCP 12(5), 470–478 (2017)CrossRefGoogle Scholar
  10. 10.
    Harry, Z.: The optimality of Naive Bayes. In: Proceedings of Florida Artificial Intelligence Research Society Conference (FLAIRS), pp. 562–567. AAAI Press (2004)Google Scholar
  11. 11.
    Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media. The AAAI Press (2014)Google Scholar
  12. 12.
    Jonathon, R.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: ACL the Association for Computer Linguistics, pp. 43–48 (2005)Google Scholar
  13. 13.
    Khan, F.H., Bashir, S., Qamar, U.: TOM: twitter opinion mining framework using hybrid classification scheme. Decis. Support Syst. 57, 245–257 (2014)CrossRefGoogle Scholar
  14. 14.
    Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the bad and the omg! In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media. The AAAI Press, Barcelona (2011)Google Scholar
  15. 15.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th International World Wide Web conference (WWW-2005). ACM, Chiba (2005)Google Scholar
  16. 16.
    Loughran, T., McDonald, B.: When is a liability not a liability? Textual analysis, dictionaries, and 10-ks. J. Finan. 66(1), 35–65 (2011). Scholar
  17. 17.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of the seventh International Conference on Language Resources and Evaluation (LREC 2010), Valetta, Malta (2010).
  18. 18.
    Ren, Y., Zhang, Y., Zhang, M., Ji, D.: Context-sensitive twitter sentiment classification using neural network. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press, Phoenix (2016)Google Scholar
  19. 19.
    Theresa, W., Janyce, W., Paul, H.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of HLT-EMNLP-2005, pp. 347–354. The Association for Computational Linguistics, Vancouver (2005)Google Scholar
  20. 20.
    Yadollahi, A., Shahraki, A.G., Zaïane, O.R.: Current state of text sentiment analysis from opinion to emotion mining. ACM Comput. Surv. 50(2), 25:1–25:33 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Iheb Meddeb
    • 1
  • Catherine Lavandier
    • 1
  • Dimitris Kotzinos
    • 1
    Email author
  1. 1.ETIS Lab, UMR 8051, CY Cergy Paris University, ENSEA, CNRSPontoiseFrance

Personalised recommendations