The Eigen-Coordinates Method: Description of Blow-Like Signals

  • Raoul R. Nigmatullin
  • Paolo Lino
  • Guido Maione


This chapter considers the application of the eigen-coordinates (ECs) method to the nontrivial example of the analysis of blow-like signals (BLS). These signals show a typical behaviour that starts in some segment of time, then rises and achieves the peak value, and finally decreases, and can originate in very different scenarios, e.g. the propagation of earthquakes, or the dissemination of some sensational news on the Internet and of the comments that accompany this news. However, the characteristic feature of most BLS is the branching and fractal structure. This observation helps to find the desired, simplified fitting function by starting from an initial function containing the nonlinear fitting parameters. This chapter carries out an in-depth analysis on available data (e.g. from asthma disease, acoustic signals from queen bees, car valves in idle regime) with the help of the ECs method described in the first chapter. However, it is stressed that the proposed fractal model enables to fit the envelopes of the BLS only. The internal structure of an arbitrary BLS associated with high-frequency oscillations deserves a separate analysis. The information provided could help researchers to find their own BLS and analyse their structure.


Fractal model Blow-like signals (BLS) The envelope of the BLS and its fit The bronchial asthma disease, songs of queen bees and car valves noise 

Supplementary material


  1. 1.
    R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847)Google Scholar
  2. 2.
    G. Williams, D. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970)CrossRefGoogle Scholar
  3. 3.
    R.R. Nigmatullin, Eigen-coordinates: New method of analytical functions identification in experimental measurements. J. Appl. Magn. Reson. 14, 601–633 (1998)CrossRefGoogle Scholar
  4. 4.
    R.R. Nigmatullin, Recognition of nonextensive statistical distributions by the eigencoordinates method. Physica A 285, 547–565 (2000)CrossRefGoogle Scholar
  5. 5.
    B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, New York, NY, 2003)CrossRefGoogle Scholar
  6. 6.
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (Imperial College Press, London, 2010)CrossRefGoogle Scholar
  7. 7.
    Yu. Feldman, N. Kozlovich, Yu. Alexandrov, R. Nigmatullin, Ya. Ryabov, Phys. Rev E. 54, 5420 (1996)Google Scholar
  8. 8.
    Yu. Feldman, A. Puzenko, Ya. Ryabov, J. Chem. Phys. 284, 139(2002)Google Scholar
  9. 9.
    J. Klafter, M.F. Shlesinger, On the relationship among three theories of relaxation in disordered systems. Proc. Natl. Acad. Sci. U. S. A. 83, 848–851 (1986)CrossRefGoogle Scholar
  10. 10.
    A. Blumen, J. Klafter, G. Zumoven, in Optical Spectroscopy of Glasses, ed. by I. Zschokke, (Reidel, Dordrecht, 1986)Google Scholar
  11. 11.
    R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Sornette, Discrete-scale invariance and complex dimensions. Phys. Rep. 297, 239–270 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Sornette, A. Johansen, A. Arneodo, J.-F. Muzy, H. Saleur, Complex Fractal Dimensions Describe the Hierarchical Structure of Diffusion-Limited-Aggregate Clusters. Phys. Rev. Lett. 76, 251–254 (1996)CrossRefGoogle Scholar
  14. 14.
    A. Johansen, D. Sornette, A.E. Hansen, Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence. Physica D 138, 302–315 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Stauffer, D. Sornette, Log-periodic oscillations for biased diffusion on random lattice. Physica A 252, 271–277 (1998)CrossRefGoogle Scholar
  16. 16.
    Fractals in Physics: The Proceedings of the 6th International Symposium, ed. L. Pietronero and E. Tozatti, Trieste, Italy, 9–12 July, 1985 (Elsivier Science Publ. 1986)Google Scholar
  17. 17.
    R. Nigmatullin, J.T. Machado, R. Menezes, Self-similarity principle: The reduced description of randomness. Centr. Eur. J.Phys. 11(6), 724–739 (2013)Google Scholar
  18. 18.
    R.R. Nigmatullin, Is it possible to replace the probability distribution function by its Prony’s spectrum? J. Appl. Nonlinear Dynam. 1(2), 173–194 (2012)CrossRefGoogle Scholar
  19. 19.
    R.R. Nigmatullin, The fluctuation metrology based on Prony’s spectroscopy (II). J. Appl. Nonlinear Dynam. 1(3), 207–225 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    R.R. Nigmatullin, C. Ionescu, D. Baleanu, NIMRAD: Novel technique for respiratory data treatment. J. Signal Image Video Process, 1–16 (2012). Scholar
  21. 21.
    M.L. Ciurea, S. Lazanu, I. Stavaracher, A.-M. Lepadatu, V. Iancu, M.R. Mitroi, R.R. Nigmatullin, C.M. Baleanu, Stressed induced traps in multilayed structures. J. Appl. Phys. 109, 013717 (2011)CrossRefGoogle Scholar
  22. 22.
    M.G. Kendall, A. Stuart, The Advanced Theory of Statistics, vol 2 (Inference and Relationship, Charles Griffin & Co Ltd, London, 1971)zbMATHGoogle Scholar
  23. 23.
    M.J. Mussel, The need for standard in recording and analyzing respiratory sounds. Med. Biol. Eng. Comput., 129–139 (1992)Google Scholar
  24. 24.
    J.E. Earis, B.M.G. Cheetham, Current methods used for computerized respiratory sound analysis. Eur. Respir. Rev. 10(77), 586–590 (2000)Google Scholar
  25. 25.
    A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975)zbMATHGoogle Scholar
  26. 26.
    R.M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach (Wiley IEEE Press, New York, 2002)Google Scholar
  27. 27.
    J. Jagla, J. Maillard, N. Martin, Sample-based engine noise synthesis using an enhanced pitch-synchronous overlap-and-add method. J. Acoust. Soc.Am. 132(5), 3098–3108 (2012). Е.К. Eskov, V.А. Toboev, Сhanges in the structure of sounds generated by Bee Colonies during sociotomy. Entomol. Rev. 9(1), 347–353 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Michelsen, W.H. Kirchner, B.B. Andersen, M. Lindauer, The tooting and quacking vibration signals of honeybee queens: A quantitative analysis. J. Comp. Physiol. 158A, 605–611 (1986)CrossRefGoogle Scholar
  29. 29.
    S.S. Schneider, S. Painter-Kurt, G. DeGrandi-Hoffman, The role of the vibration signal during queen competition in colonies of the honeybee, Apis mellifera. Anim. Behav. 61, 1173–1180 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raoul R. Nigmatullin
    • 1
  • Paolo Lino
    • 2
  • Guido Maione
    • 2
  1. 1.Radioelectronics and Informative-Measurement Technics DepartmentKazan National Research Technical University named by A.N. Tupolev (KNRTU-KAI)KazanRussia
  2. 2.Department of Electrical and Information EngineeringPolytechnic University of BariBariItaly

Personalised recommendations