Tribology of Intelligent Magnetorheological Materials

  • Rakesh Jinaga
  • Shreedhar Kolekar
  • T. JagadeeshaEmail author
Part of the Materials Forming, Machining and Tribology book series (MFMT)


Magneto rheological (MR) fluid are categorized as one of smart materials, where the viscosity of the fluid enhances significantly under the influence of applied magnetic field. The fluids are set up by scattering micron scale magnetic particles into a fluid media called as carrier fluid with added substances for improving the rheological characteristics of fluid. The fundamental element of these fluid is the capacity to undergo change from fluidized state to semisolid state under controllable yield stress within couple of milliseconds in the wake of externally activated magnetic field. Lower magneto rheological impact and sedimentation of particles in MR fluids are the most challenging topics against the broad applications of MR fluid revolution in current ventures. Different techniques have been proposed and utilized by analysts to enhance the magneto rheological impact and stability of these liquids against the sedimentation. The primary focal point of this brief is to show a thorough survey on various strategies for synthesis and reduction in sedimentation rate of MR fluids. Besides, rheological models and use of MR liquids are talked about along this compilation.


MR fluid Rheology Intelligent materials 


  1. 1.
    W. Kordonsky, O. Ashour, C.A. Rogers, Magnetorheological fluids: materials, characterization, and devices. J. Intell. Mater. Syst. Struct. 7, 123–130 (1996)CrossRefGoogle Scholar
  2. 2.
    P.P. Phulé, J.M. Ginder, A.D. Jatkar, Synthesis and properties of magnetorheological fluids for active vibration control, in Materials for Smart Systems II (Materials Research Society, Boston, MA, 1996)Google Scholar
  3. 3.
    K.D. Weiss et al., High strength magneto- and electro-rheological fluids. SAE Trans. 102, 425–430 (1993)Google Scholar
  4. 4.
    R.W. Phillips, Engineering applications of fluid with a variable yield stress, 1969Google Scholar
  5. 5.
    K.P. Tan, R. Stanway, W.A. Bullough, Braking responses of inertia/load by using an electro-rheological (ER) brake. J. Mechatron. 17, 277–289 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Park, D. Stoikov, L. Falcao de Luz, A. Suleman, A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics 16(16), 405 (2006)CrossRefGoogle Scholar
  7. 7.
    E.J. Park, L. Falcao da Luz, A. Suleman, Multidisciplinary design optimization of an automotive magnetorheological brake design. Comput. Struct. 86, 207 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Shiao, Q.A. Nguyen, Structural analysis and validation of the multi-pole magnetorheological brake for motorcycles. Procedia Eng. 76, 24 (2014)CrossRefGoogle Scholar
  9. 9.
    D.J. Carlson, Magnetorheological brake with integrated flywheel. U.S. Patent 6,186,290 Bl, 2001Google Scholar
  10. 10.
    K. Karakoc, E.J. Park, A. Suleman, Design considerations for an automotive magneto-rheological brake. Mechatronics 18(8), 434 (2008)CrossRefGoogle Scholar
  11. 11.
    G.M. Webb, Exercise apparatus and associated method including rheological fluid brake. U.S. Patent 5,810,696, 1998Google Scholar
  12. 12.
    S. Bydon, Construction and Operation of Magnetorheological Rotary Brake (Archiwum Process Control, 2002), p. 20Google Scholar
  13. 13.
    B. Liu, W.H. Li, P.B. Kosasih, X.Z. Zhang, Development of an MR brake based haptic device. Smart Mater. Struct. 15, 1960 (2006)CrossRefGoogle Scholar
  14. 14.
    C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 25, 493 (2006)Google Scholar
  15. 15.
    W. Zhou, C.M. Chew, G.S. Hong, Development of a compact double-disk magnetorheological fluid brake. Robotica 55, 493 (2006)Google Scholar
  16. 16.
    J.D. Carlson, What makes a good MR fluid? J. Intell. Mater. Syst. Struct. 13, 431 (2002)CrossRefGoogle Scholar
  17. 17.
    P.P. Phule, A.D. Jatkar, Synthesis and processing magnetic iron cobalt alloy particles for high strength magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 503–510Google Scholar
  18. 18.
    Q. Nguyen, S. Choi, Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat. Smart Mater. Struct. 19 (2010)CrossRefGoogle Scholar
  19. 19.
    P.P. Phule, J.M. Ginder, Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 445–453Google Scholar
  20. 20.
    E. Lemaire, A. Meunier, G. Bossis, J. Liu, D. Felt, P. Bahtovoi, N. Matoussevitch, Influence of the particle size on the rheology of magnetorheological fluids. J. Rheol. 39, 1011–1020CrossRefGoogle Scholar
  21. 21.
    C. Kormann, H. Laun, H. Ritcher, MR fluids with nanosized magnetic panicles. Int. J. Mod. Phys. B 10, 3167–3172 (1996)CrossRefGoogle Scholar
  22. 22.
    N. Rosenfeld, N.M. Wereley, R. Radhakrishnan, T.S. Sudarshan, Behavior of magnetorheological fluids utilizing nanopowder iron. Int. J. Mod. Phys. B 16(17–18), 2392–2398 (2002)CrossRefGoogle Scholar
  23. 23.
    A. Chaudhuri, G. Nang, N.M. Wereley, V. Tasovksi, R. Radhakrislman, Substitution of micron by nanometer scale powders in magnetorheological fluids. Int. J. Mod. Phys. B: Condens. Matter Phys. 19(7–9), 1374–1380 (2005)CrossRefGoogle Scholar
  24. 24.
    N.M. Werely, A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love, T.S. Sudarshan, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intell. Mater. Syst. Struct. 17, 393–401 (2006)CrossRefGoogle Scholar
  25. 25.
    B.J. Park, K.H. Song, H.J. Choi, Magnetic carbonyl lion nanoparticle based magnetorheological suspension and its characteristics. Mater. Lett. 63(15), 1350–1352 (2009) CrossRefGoogle Scholar
  26. 26.
    E.F. Burguera, B.J. Love, R. Sahul, G. Ngatu, N.M. Wereley, A physical basis for stability in bimodal dispersions including micrometer-sized particles and nanoparticles using both linear and non-linear models to describe yield. J. Intell. Mater. Syst. Struct. 19(11), 1361–1367 (2008)CrossRefGoogle Scholar
  27. 27.
    F.F. Fang, H.J. Choi, M.S. Jhon, Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf. A 351(1–3), 46–51 (2009)CrossRefGoogle Scholar
  28. 28.
    M.T. Lopez-Lopez, P. Kuzhir, A. Meunier, G. Bossis, Synthesis and magneto rheology of suspensions of cobalt particles with tunable particle size. J. Phys.: Conf. Ser. 149, 012073 (2009)Google Scholar
  29. 29.
    S.T. Lim, M.S. Cho, I.B. Jang, H.J. Choi, Magnetorheological characterization of carbonyl iron suspension stabilized by finned silica. J. Magn. Magn. Mater. 282, 170–173 (2004)CrossRefGoogle Scholar
  30. 30.
    C. Fang, B.Y. Zhao, L.S. Chen, Q. Wu, N. Liu, K.A. Ku, The effect of the green additive guar gum on the properties of magnetorheological fluid. Smart Mater. Struct. 14, N1–N5 (2005)CrossRefGoogle Scholar
  31. 31.
    P. Pilule, Magnetorheological fluid. U.S. Patent 5,985,168, 1999Google Scholar
  32. 32.
    V.R. Foista Iyanger, S.M. Yugelevic, Stabilization of magnetorheological fluid suspensions using a mixture of organoclays. U.S. Patent 6_io/7-P1Google Scholar
  33. 33.
    B. Jang, H.B. Kim, J.Y. Lee, J.L. You, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J. Appl. Phys. 97, 1–3 (2005)CrossRefGoogle Scholar
  34. 34.
    P. Phule, Synthesis of novel magnetorheological fluids. MRS Bull. 23, 23–24 (1998)CrossRefGoogle Scholar
  35. 35.
    C.W. Macosko, Rheology: Principles, Measurements, and Applications (VCH Publishers Inc., New York, 1994)Google Scholar
  36. 36.
    J. Rabinow, Magnetic fluid torque and force transmitting device. U.S. Patent 1951, USAGoogle Scholar
  37. 37.
    N.M. Wereley, J.U. Cho, Y.T. Choi, S.B. Choi, Magnetorheological dampers in shear mode. Smart Mater. Struct. 17(1), 015022 (2008)CrossRefGoogle Scholar
  38. 38.
    M.R. Jolly, J.W. Bender, R.T. Mathers, Indirect measurement of micro structural development in magnetorheological fluids, in 6th International Conference on ER Fluids, MR Suspensions and Their Applications (World Scientific, Yonezawa, Japan, 1997), pp. 471–477Google Scholar
  39. 39.
    M. Kciuk, R. Turczyn, Properties and application of magnetorheological fluids. J. Achiev. Mater. Manuf. Eng. 18, 127–130 (2006)Google Scholar
  40. 40.
    P.J. Rankin, A.T. Horvath, D.J. Klingenberg, Magnetorheology in viscoplastic media. Rheol. Acta 38, 471–477 (1999)CrossRefGoogle Scholar
  41. 41.
    V.R. Iyanger, Durable magnetorheological fluid compositions. U.S. Patent 6,818,143, 2004Google Scholar
  42. 42.
    M.A. Golden, J.C. Ulieny, K.S. Snavely, A.L. Smith, Magnetorheological fluids. U.S. Patent 6,932,917, 2005Google Scholar
  43. 43.
    J. Rabinow, The magnetic fluid clutch. AIEE Trans. 67, 1308 (1948) Google Scholar
  44. 44.
    P. Poddar, J.L. Wilson, H. Srikanth, J.-H. Yoo, N.N. Wereley, S. Kotha, L. Barthouty, R. Radhakrishnan, Nanocomposite magneto-rheological fluids with uniformly dispersed Fe nanoparticles. J. Nanosci. Nanotechnol. 4(1–2), 192–196 (2004)CrossRefGoogle Scholar
  45. 45.
    J.D. Carlson, M.R. Jolly, MR fluid, foam and elastomer devices. Mechatronics 10, 555–569 (2000)CrossRefGoogle Scholar
  46. 46.
    J.D. Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review. Soft Matter 7, 3701–3710 (2011)CrossRefGoogle Scholar
  47. 47.
    I. Bica, Y.D. Liu, H.J. Choi, Physical characteristics of magnetorheological suspensions and their applications. J. Ind. Eng. Chem. 19, 394–406 (2013)CrossRefGoogle Scholar
  48. 48.
    J. Wang, G. Meng, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering (Part L). Proc. Inst. Mech. Eng. 215, 165–174 (2001)CrossRefGoogle Scholar
  49. 49.
    A.G. Olabi, A. Grunwald, Design and application of magneto-rheological fluid. Mater. Des. 28, 2658–2664 (2007)CrossRefGoogle Scholar
  50. 50.
    W.W. Chooi, S.O. Oyadiji, Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Comput. Struct. 86, 473–482 (2008)CrossRefGoogle Scholar
  51. 51.
    C. Guerrero-Sanchez, T. Lara-Ceniceros, E. Jimenez-Regalado, M. Rasa, U.S. Schubert, Magnetorheological fluids based on ionic liquids. Adv. Mater. 19, 1740–1747 (2007)CrossRefGoogle Scholar
  52. 52.
    J.H. Park, B.D. Chin, O.O. Park, Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J. Colloid Interface Sci. 240, 349–354 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rakesh Jinaga
    • 1
  • Shreedhar Kolekar
    • 1
  • T. Jagadeesha
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringNational Institute of Technology, NIT CalicutCalicutIndia

Personalised recommendations