Advertisement

Experimental Archaeometallurgy

  • Andreas Hauptmann
Chapter
  • 20 Downloads
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

Experimental archaeometallurgy is part of experimental archaeology. It includes experiments on mining, the processing of ores, the methodology of roasting and smelting to the extraction and processing of metals by casting, alloying and patinating. It includes the replication of possible crafting techniques from the entire chaîne d’opératoire to better understand ancient metallurgical steps and processes. Because in many cases attempts to reconstruct these they have been influenced, adopted and restricted by models of modern industrial metallurgy. Therefore, experimental work, carried out as closely as possible to archaeological evidence, is necessary. It often leads to new ideas and knowledge about early metallurgical procedures.

Bibliography

  1. Agricola Georgius (1556) De Re Metallica libri XII. Ed Fraustadt G, Prescher H. VEB Deutscher Verlag Wiss Berlin 1974Google Scholar
  2. Bachmann HG, Rothenberg B (1980a) Die Verhüttungsverfahren von Site 30. In: Conrad HG, Rothenberg B (eds) Antikes Kupfer im Timna-Tal. Der Anschnitt Beiheft, vol 1, pp 215–236Google Scholar
  3. Bourgarit D, Mille B, Burens A, Carozza L (2002) Smelting of chalcopyrite during chalcolithic times: some have done it in ceramic pots as vase-furnaces. In: Kars H, Burke E (eds) 33rd Internat Symp Archaeometry, Amsterdam, April 2002. Vrije Universiteit, Amsterdam, pp 297–302Google Scholar
  4. Charles JA (1975) Where is the Tin? Antiquity 49:19–24CrossRefGoogle Scholar
  5. Charles JA (1980) The coming of copper and copper-based alloys and iron: a metallurgical sequence. In: Wertime TA, Muhly JD (eds) The coming of the age of iron. Yale University Press, New Haven and London, pp 151–182Google Scholar
  6. Craddock PT, Freestone I, Middleton A, Van Grunderbeek MC (2007a) Early iron-smelting debris from Rwanda and Burundi, East Africa. J Hist Metall Soc 41(1):1–14Google Scholar
  7. Craddock PT, Meeks N, Timberlake S (2007b) On the edge of success: the scientific examination of the products of the early mines research group smelting experiments. In: La Niece S, Hooks D, Craddock PT (eds) Metals and mines. Stud Archaeometall. Archetype Publ. & Brit. Mus, London, pp 37–45Google Scholar
  8. Earl B (1985) “Melting tin” in the West of England: a study of an old art. J Hist Metall 19(2):153–161Google Scholar
  9. Earl B (1986) Melting tin in the West of England: part 2. J Hist Metall 20(1):17–32Google Scholar
  10. Earl B, Yener A (1995) Tin smelting at the oriental institute. Oriental Inst News Notes 146:2–5Google Scholar
  11. Goldenberg G (2004) Ein Verhüttungsplatz der mittleren Bronzezeit bei Jochberg (Nordtirol). In: Weisgerber G, Goldenberg G (eds) Alpenkupfer – Rame delle Alpi, Der Anschnitt Beih, vol 17, pp 165–176Google Scholar
  12. Hall M, Steadman SR (1991) Tin and Anatolia: another look. J Mediterran Archaeol 4(2):217–234Google Scholar
  13. Hanning E, Gauß R, Goldenberg G (2010) Metal for Zambujal: experimentally reconstructing a 5000-year-old technology. Trabajos de Prehist 67(2):287–304Google Scholar
  14. Hanning E, Pils R (2011) Experimentelle Untersuchungen zur bronzezeitlichen Kupferverhüttung im ostalpinen Gebiet – Erste Ergebnisse. In: Oeggl K, Goldenberg G, Stöllner T, Prast T (eds) Die geschichte des Bergbaus in Tirol und seinen angrenzenden Gebieten. Proc 5th milestone meeting SFB-HIMAT, 2010, Mühlbach, pp 129–134Google Scholar
  15. Hauptmann A (2007) The early metallurgy of copper. Evidence fom Faynan, Jordan. In: Wagner GA, Herrmann B (eds) Natural science in archaeology. Springer, HeidelbergGoogle Scholar
  16. Hauptmann A, Schmitt-Strecker S, Begemann F, Palmieri A (2002) Chemical composition and lead isotopy of metal objects from the “royal” tomb and other related finds from Arslantepe, eastern Anatolia. Paléorient 28(2):43–70CrossRefGoogle Scholar
  17. Heeb J, Ottaway B (2014) Experimental archaeometallurgy. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective, Methods and syntheses. Springer, pp 161–192Google Scholar
  18. Herdits H (2003) Bronze age smelting site in the Mitterberg mining area in Austria. In: Craddock PT, Lang J (eds) Mining and metal production through the ages. The British Museum Press, pp 69–75Google Scholar
  19. Hetherington R (1980) Investigations into primitive lead smelting and its products. In: Oddy WA (ed) Aspects of early metallurgy, Brit Mus Occ papers, vol 17, pp 27–40Google Scholar
  20. Kassianidou V (2016) Metallurgy and metalwork in Enkomi – Revisiting Porphyrios Dikaios’ excavations. In: Bourogiannis G, Muhlenbock C (eds) Ancient Cyprus Today: Museum Collections and New Research, SIMA Pocket-book 184, Uppsala, pp 79–90Google Scholar
  21. Kölschbach S, Woelk G, Hauptmann A (2000) Experimente zur simulation prähistorischer Kupfergewinnung: Zur Verfahrenstechnik von Windöfen. Meta 7(1):5–22Google Scholar
  22. Lagarce J, Bounni E, Saliby N (1983) Les fouilles à Ras Ibn Hani en Syrie (campagne de 1980, 1981 et 1982). In: Contribution Rendus de l’Académie des Inscriptions, pp 249–290Google Scholar
  23. Laschimke R, Burger M (2011) Archäometallurgische Experimente zum Giessen von bronzezeitlichen Ochsenhautbarren aus Kupfer. Metall 3:86–92Google Scholar
  24. Laschimke R, Burger M (2015) Die Anfänge der Kupfermetallurgie - archäometallurgische Versuche zur Verhüttung von Malachit am offenen Feuer. In: Weller U, Lessig T (eds) Experimentelle Archäologie in Europa, pp 10–20Google Scholar
  25. Laschimke R, Burger M (2017) Neolithische Flachbeile aus Kupfer, die ältesten Metallwerkzeuge des menschen – archäometallurgische Experimente zu ihrer Herstellung. Metall 3:85–88Google Scholar
  26. Laschimke R, Burger M (2018) Die Herstellung von kupferzeitlichen Äxten mit Schaftloch – archäometallurgische Experimente. Metall 6:239–243Google Scholar
  27. Leuzinger U (1997) Die jungsteinzeitlichen Kupferfunde aus dem Kanton Thurgau. Arch Switz 20:51–53Google Scholar
  28. Levy TE, Adams RB, Hauptmaqnn A, Prange M, Schmitt-Strecker S, Najjar M (2002) Early bronze age metallurgy: a newly discovered copper manufactory in southern Jordan. Antiquity 76:425–437Google Scholar
  29. Löffler I (2017) New thoughts about Iron age metallurgy in Faynan: a discussion. In: Eisenach P, Stöllner T, Windler A (eds) The RITaK conferences 2013–2014, Der Anschnitt Beih, vol 34, pp 151–162Google Scholar
  30. Maddin R, Muhly JD, Stech-Wheeler T (1980) Distinguishing artifacts made of native copper. J Archaeol Sci 7:221–225CrossRefGoogle Scholar
  31. Matuschik I (1998) Kupferfunde und Metallurgiebelege, zugleich ein Beitrag zur Gechichte der kupferzeitlichen Dolche Mittel-, Ost- und Südeuropas. In: Mainberger M (ed) das Moordorf von Reute. Archäologische Untersuchungen in der jungeneolithischen Siedlung Reute-Schorrenried. Teraqua CAP, Staufen i. Brsg., pp 207–261Google Scholar
  32. Meier DMP (2015) Traces of protohistorical metallurgical activities during the 3rd millennium BCE in East Iran with a special focus on the case of Shahdad in the Dasht-eh Lut (Kerman province). PhD-diss FU BerlinGoogle Scholar
  33. Merkel J (1990) Experimental reconstruction of bronze age copper smelting based on archaeological evidence from Timna. In: Rothenberg B (ed) The ancient metallurgy of copper, Inst. Archaeo-Metall. Stud. University College, London, pp 78–122Google Scholar
  34. Müller-Karpe M (1990b) Der Guss in der verlorenen Sandform in Mesopotamien. Mitt Deutsche Orient-Gesellsch 122:173–192Google Scholar
  35. Muhly JD, Begemann F, Öztunali Ö, Pernicka E, Schmitt-Strecker S, Wagner GA (1991) The bronze metallurgy of Anatolia and the question of local tin sources. In: Pernicka E, Wagner GA (eds) Archaeometry 1990. Birkhäuser, Basel, pp 209–220Google Scholar
  36. Pernicka E (1990) Gewinnung und Verbreitung der Metalle in prähistorischer Zeit. Jb Röm-German Zentralmus 37(1):21–129Google Scholar
  37. Pernicka E, Begemann F, Schmitt-Strecker S, Todorova H, Kuleff I (1997) Prehistoric copper in Bulgaria. Eurasia Antiqua 3:41–180Google Scholar
  38. Pleiner R (1967) Preliminary evaluation of the 1966 metallurgical investigations in Iran. In: Caldwell JR (ed) Investigations at Tal-Iblis, Illinois: state museum preliminary report, vol 9, pp 340–405Google Scholar
  39. Pleiner R (2000) Iron in archaeology: the European Bloomery smelters. Helvetica & Tempora, PrahaGoogle Scholar
  40. Radivojević M, Rehren T, Pernicka E, Šljivar D, Brauns M (2010) On the origins of extractive metallurgy: new evidence from Europe. J Archaeol Sci 37:2775–2787Google Scholar
  41. Rapp G (1988) On the origins of copper and bronze alloying. In: Maddin R (ed) The beginnings of the use of metals and alloys, Cambridge, MA, pp 21–27Google Scholar
  42. Rothenberg B (1990 Ed) Researches in the Arabah 1959–1984, vol 2: The Ancient Metallurgy of Copper. Inst Archaeo-metall Stud, Univers LondonGoogle Scholar
  43. Rovira S, Gutierrez A (2003) Toro 2001. Cronica de un proceso de fundicion experimental de minerales de cobre’. Mineros y Fundidores en el inicio de la Edad de los Metales. El midi francés y el norte de la Península Ibérica, pp 70-81Google Scholar
  44. Smith CS, Wertime TA, Pleiner R (1967) Preliminary reports of the metallurgical project. In: Caldwell JR (ed) Investigations at Tal-i-Iblis, Illinois state museum preliminary reports 9. Springfield, III, pp 318–326Google Scholar
  45. Stöllner T (2019b) Between mining and smelting in the bronze age – beneficiation processes in an alpine copper Production District. Results of 2008 to 2017 excavations at the “Sulzbach-moos”-bog at the Mitterberg (Salzburg, Austria). Der Anschnitt Beih 42:165–190Google Scholar
  46. Straube H (1986) Kritische Gegenüberstellung der Theorien über die Metallurgie des Rennfeuers. Ferrum 57:20–28Google Scholar
  47. Timberlake S (2007) The use of experimental archaeology/archaeometallurgy for the understanding and reconstruction of early bronze age mining and smelting technologies. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines. Brit Mus, London, pp 27–36Google Scholar
  48. Tylecote RF, Austin JN, Wraith AE (1971) The mechanism of the Bloomery process. J Iron Steel Inst 5:342–363Google Scholar
  49. Tylecote RF, Boydell PJ (1978) Experiments on copper smelting based upon early furnaces found at Timna. In: Rothenberg B (ed) Archaeometallurgy: chalcolithic copper smelting, Inst Archaeo-Metallurg stud Monogr 1, London, pp 27–49Google Scholar
  50. Tylecote RF, Merkel JF (1985) Experimental smelting techniques: achievements and future. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Occ papers, vol 48, pp 13–20Google Scholar
  51. Wayman ML, Duke MJ (1999) The effects of melting on native copper. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy. Proc Internat Conf, Bochum 1995, Der Anschnitt Beih, vol 9, pp 55–63Google Scholar
  52. Yalçın Ü (1998) Der Keulenkopf von can Hasan (TR). Naturwissenschaftliche Untersuchung und neue interpretation. In: Rehren T, Hauptmann A, Muhly JD (eds) Metallurgica Antiqua, In honour of Hans-Gert Bachmann and Robert Maddin. Der Anschnitt Beih, vol 8, pp 279–289Google Scholar
  53. Yalçın Ü (2000a) Anfänge der Metallverwendung in Anatolien. In: Yalçın Ü (ed) Anatolian metal I, Der Anschnitt Beih, vol 13, pp 17–30Google Scholar
  54. Yalçın Ü (2000b) Frühchalkolithische Metallfunde von Mersin-Yumuktepe: Beginn der extraktiven Metallurgie? Tüb-Ar III:109–128Google Scholar
  55. Yalçın Ü, Pernicka E (1999) Frühneolithische Metallurgie von Aşıklı Höyük. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy. Proc Internat Conf “the beginnings of metallurgy”, Bochum 1995, Der Anschnitt Beih, vol 9, pp 45–54Google Scholar
  56. Yener A, Özbal H, Kaptan E, Pehlivan AN, Goodway M (1989a) Kestel: an early bronze age source of tin ore in the Taurus Mountains, Turkey. Science 244:200–203CrossRefGoogle Scholar
  57. Yener A, Vandiver P (1993) Tin processing at Göltepe, an early bronze age site in Anatolia. Am J Archaeol 97:207–238Google Scholar
  58. Yener A, Adriaens A, Earl B, Özbal H (2003) Analyses of Metalliferous residues, crucible fragments, experimental smelts, and ores from Kestel tin mine and the tin processing site of Göltepe, Turkey. In: Craddock PT, Lang J (eds) Mining and metal production through the ages. Brit Mus Press, London, pp 181–197Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Hauptmann
    • 1
  1. 1.Haus der Archäologien, ArchaeometallurgyDeutsches Bergbau-Museum / Ruhr UniversityBochumGermany

Personalised recommendations