Stages of Early Metallurgical Activities

  • Andreas Hauptmann
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)


Even though, from a global perspective, the developmental stages of early metallurgy show significant chronological and geographical differences, surprisingly many common technological basics can be observed again and again, despite the considerable spatial distances. This is made obvious by many publications, of which only a few can be mentioned here. Robert Maddin followed the topic many years ago with the organisation of the already mentioned conference series The Beginning of the Use of Metals and Alloys (BUMA), of which, e.g. the work of Maddin (1988) has to be mentioned. This volume contains articles that show the extraction and distribution of ores and metals in Europe, the Middle East, South-west and South-east Asia, South America and Africa. Recently, Roberts and Thornton (2014), presented a thoroughly comprehensive global overview of the development of early metallurgy with their opus Archaeometallurgy in Global Perspective, highlighting the current state of research in this field.


  1. Abdel-Motelib A, Bode M, Hartmann R, Hartung U, Hauptmann A, Pfeiffer K (2012) Archaeometallurgical expeditions to the Sinai Peninsula and the Eastern Desert of Egypt (2006, 2008). Meta 19(1/2):3–59Google Scholar
  2. Anfinset N (1996) Social and technological aspects of mining, smelting and casting copper. An ethnoarchaeological study from Nepal. MA-thesis, Dept. Archaeol, Univers Bergen, NorwayGoogle Scholar
  3. Anfinset N (2011) Social and technological aspects of mining, smelting and casting copper. An ethnoarchaeological study from Nepal. Publ Deutsches Bergbau-Museum Bochum 181Google Scholar
  4. Avner U, Carmi I, Segal D (1994) Neolithic to bronze age settlement of the Negev and Sinai in light of radiocarbon dating: a view from the Southern Negev. In: Bar-Yosef O, Kra RS (eds) Late qatrenary chronology and paleoclimates of the Eastern Mediterranean. RadioCarbon, Arizona, pp 265–300Google Scholar
  5. Bamberger M, Wincierz P (1990) Ancient smelting of oxide copper Ore. In: Rothenberg B (ed) Researches in the Arabah 1959-1984, vol II: the ancient metallurgy of copper. Inst Archaeo-Metall Stud, London, pp 123–157Google Scholar
  6. Bar-Yosef O, Alon D (1988) Nahal Hemar Cave. The excavations. Altiqot 18:1–30Google Scholar
  7. Bartels C, Fessner M, Klappauf L, Linke FA (2007) Kupfer, Blei und Silber aus dem Goslarer Rammelsberg von den Anfängen bis 1620. Publ Deutsches Bergbau-Museum Bochum 151Google Scholar
  8. Bisson MS (2000) Precolonial copper metallurgy: sociopolitical context. In: Vogel J (ed) Ancient African metallurgy. Altamira-Press, Walnut-Creek, pp 83–145Google Scholar
  9. Borg G (2014) “Gold is where you find it” – Zeitgenössischer artisanaler Goldbergbau in Afrika als Analogie (prä-)historischer Goldgewinnung. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht – Frühes Gold und Silber. Mitteldeutscher Archäologentag, Oct 2013, Halle (Saale), pp 53–69Google Scholar
  10. Catt J (1992) Angewandte Quartärgeologie. Enke Publ StuttgartGoogle Scholar
  11. Celis G (1991) Eisenhütten in Afrika. Les fonderies africaines du fer. Museum für Völkerkunde Frankfurt am Main. Henrich, Frankfurt a.M.Google Scholar
  12. Childe VG (1928) The most ancient east: the oriental prelude to European prehistory. Kegan PaulGoogle Scholar
  13. Comşa E (1991) L’utilisation du cuivre en Roumanie pendant le Néolithic moyen. In: Éluère S, Mohen JP (eds) La Découverte du métal. Picard (Millénaire 2), Paris, pp 77–84Google Scholar
  14. Craddock PT (1995) Early metal mining and production. Edinburgh University Press 1995Google Scholar
  15. Day PM, Doonan RCP (2007) Metallurgy in the early bronze age Aegean. Sheffield studies in Aegean archaeology 7. Oxbow Books, Oxford, UKGoogle Scholar
  16. Dougherty RC, Caldwell JR (1966) Evidence of early pyrometallurgy in the Kerman range. Iran Sci 153:27–40Google Scholar
  17. Esin U (1993) Copper beads of Aşıklı. In: Mellink M, Porada E, Özgüç T (eds) Aspects of art and iconography: anatolia and its neighbours, Studies in honor of Nimet Özgüç, pp 173–183Google Scholar
  18. Esin U (1996) Asikli, ten thousand years ago: a habitation model from central Anatolia. In: Housing and settlement in Anatolia: a historical perspective. Habitat, Istanbul, pp 31–42Google Scholar
  19. Forbes RJ (1972) Metallurgy in antiquity 2. Copper and bronze, tin, arsenic, antimony and iron. Brill, LeidenGoogle Scholar
  20. Frame LD (2012) Reconstructing ancient technologies: chalcolithic crucible smelting at Tal-i-Iblis, Iran. In: Jett P, McCathy B, Douglas JD (eds) Fifth Forbes symposium: studies of ancient Asian Asian metallurgy. Smiths, Washington DC, pp 181–202Google Scholar
  21. French D (1962) Excavations at Can Hasan. First preliminary report. Anatol Stud 12:27–40CrossRefGoogle Scholar
  22. Gale NH, Papastamataki A, Stos-Gale ZA, Leonis K (1985) Copper sources and copper metallurgy in the Aegean bronze age. In: Craddock PT, Hughes MJ (eds) Furnaces and smelting technology in antiquity, Brit Mus Occ Papers, vol 48, pp 81–102Google Scholar
  23. Gauß R (2015) Früher Bergbau und Metallurgie auf der Iberischen Halbinsel. Faszikel 1: Zambujal und die Anfänge der Metallurgie in der Estremadura (Portugal). Technologie der Kupfergewinnung, Herkunft des Metalls und soziokulturelle Bedeutung der Innovation. Iberia Archaeologica 15.1. Wasmuth, TübingenGoogle Scholar
  24. Glumac PD, Todd JA (1991a) Earl metallurgy in Southeast Europe: the evidence for production. MASCA Res Pap 8(1):9–19Google Scholar
  25. Glumac PD, Todd JA (1991b) Eneolithic copper smelting slags from the middle Danubian Basin. In: Pernicka E, Wagner GA (eds) Archaeometry 1990. Birkhäuser, Basel, pp 155–164Google Scholar
  26. Golden J (2014) Who Dunnit? New clues concerning the development of chalcolithic metal technology in the Southern Levant. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective, methods and syntheses. Springer, pp 559–578Google Scholar
  27. Gowland W (1899) The early metallurgy of copper, tin and iron in Europe, as illustrated by ancient remains and the primitive processes surviving in Japan. Archaeologia 56(2):267–322CrossRefGoogle Scholar
  28. Garfinkel Y, Klimscha F, Shalev S, Rosenberg D (2014) The beginning of metallurgy in the Southern levant: a late 6 millennium CalBC copper Awl from Tel Tsaf. PLoS One 9(3):e92591CrossRefGoogle Scholar
  29. Hanning E, Gauß R, Goldenberg G (2010) Metal for Zambujal: experimentally reconstructing a 5000-year-old technology. In: Proc Symp Arqueometalurgia: Aspectos tecnológicos, económicos y sociales en la orehistoria reciente Europea. Trabajos de Prehistoria, vol 67, pp 287–304Google Scholar
  30. Hansen S (2016) Prähistorische Innovationsforschung. Das Altertum 61:81–132Google Scholar
  31. Hauptmann A (2007) The early metallurgy of copper. Evidence fom Faynan, Jordan. In: Wagner GA, Herrmann B (eds) Natural science in archaeology. Springer, HeidelbergGoogle Scholar
  32. Hauptmann A, Weisgerber G (1996) The early production of metal in the near east. In: Bagolini B, LoSchiavo F (eds) The copper age in the near east and Europe. Proc Internat Congress Prehist and Protohist Sc, Forli, pp 95–101Google Scholar
  33. Hauptmann A, Yalçın Ü (2000) Lime plaster, cement and the first Puzzolanic reaction. Paléorient 26(2):61–68CrossRefGoogle Scholar
  34. Hauptmann A, Khalil L, Schmitt-Strecker S (2004) Evidence for late chalcolithic/early bronze age I copper production from Timna ores at tall Magass, Aqaba. In: Khalil L, Schmidt K (eds) Prehistoric Aqaba I, Orient-Archäol, vol 23, pp 295–304Google Scholar
  35. Hauptmann A, Löffler I (2013a) Technological innovations and organisational structures of prehistoric mining and metal production – examples from Faynan, Jordan. In: Burmeister S, Hansen S, Kunst M, Müller-Scheeßel N (eds) Metal matters. Innovative technologies and social change in prehistory and antiquity, vol 12. Menschen – Kulturen – Traditionen. Forschungsclust Deutsches Archäolog Inst, VML Rahden/Westf, pp 65–89Google Scholar
  36. Hauptmann A, Schmitt-Strecker S, Levy TE, Begemann F (2015) On early bronze age copper Bar ingots from the southern Levant. Bull Am Soc Orient Res 373:1–24CrossRefGoogle Scholar
  37. Hauptmann A, Schneider G, Bartels C (2016) The shipwreck of Bom Jesus, AD 1533: Fugger copper in Namibia. J Afr Archaeol 14(2):181–207CrossRefGoogle Scholar
  38. Heeb J (2014) Copper shaft-hole axes and early metallurgy in South-Eastern Europe. Archaeopress Archaeology, OxfordCrossRefGoogle Scholar
  39. Heeb J, Ottaway B (2014) Experimental archaeometallurgy. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective, Methods and syntheses. Springer, pp 161–192Google Scholar
  40. Herdits H (1993) Zum Beginn experimentalarchäologischer Untersuchungen einer bronzezeitlichen Kupferverhüttungsanlage in Mühlbach, Salzburg. Archaeologia Austriaca 77:31–38Google Scholar
  41. Jankovič S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineral Deposits 32:426–433CrossRefGoogle Scholar
  42. Klein S, Hauptmann A (2016) Ur, Mesopotamia: the Lead metal from pit X. Meta 22(1):136–140Google Scholar
  43. Laschimke R, Burger M (2015) Die Anfänge der Kupfermetallurgie - archäometallurgische Versuche zur Verhüttung von Malachit am offenen Feuer. In: Weller U, Lessig T (eds) Experimentelle Archäologie in Europa, pp 10–20Google Scholar
  44. Laschimke R, Burger M (2017) Neolithische Flachbeile aus Kupfer, die ältesten Metallwerkzeuge des menschen – archäometallurgische Experimente zu ihrer Herstellung. Metall 3:85–88Google Scholar
  45. Laschimke R, Burger M (2018) Die Herstellung von kupferzeitlichen Äxten mit Schaftloch – archäometallurgische Experimente. Metall 6:239–243Google Scholar
  46. Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by Cosmelting: modern experiment, ancient Practise. J Archaeol Sci 26:497–526CrossRefGoogle Scholar
  47. Leroi-Gourhan (1943) L’Homme et la Matìere: evolution et Techniques (archive). Peris, Albin collGoogle Scholar
  48. Leusch V, Pernicka E, Armbruster B (2014) Chalcolithic gold from Varna – provenance, circulation and function. In: Meller H, Risch R, Pernicka E (eds) Metalle der Macht – Frühes gold und Silber, 6. Mitteldeutscher Archäologentag, Oct 2013, Halle (Saale), pp 165–182Google Scholar
  49. Levy TE, Adams RB, Hauptmaqnn A, Prange M, Schmitt-Strecker S, Najjar M (2002) Early bronze age metallurgy: a newly discovered copper manufactory in southern Jordan. Antiquity 76:425–437CrossRefGoogle Scholar
  50. Linduff K, Mei J (2014) Metallurgy in ancient eastern Asia: retrospect and prospects. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective, Methods and syntheses. Springer, pp 785–803Google Scholar
  51. Maczek M, Preuschen E, Pittioni R (1952) Beiträge zum problem des Ursprunges der Kupfererzverwertung in der Alten welt. Archaeol Aust 10:61–70Google Scholar
  52. Maddin R (1988) The beginning of the use of metals and alloys II. MIT Press, Cambridge/MAGoogle Scholar
  53. Maddin R, Muhly JD, Stech T (1999) Early metalworking at Çayönü. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy, Der Anschnitt, Beih, vol 9, pp 37–44Google Scholar
  54. Marshall T (2015) die Macht der Geographie. Wie sich Weltpolitik anhand von 10 Karten erklären lässt. Dtv MünchenGoogle Scholar
  55. Meignen L, Goldberg P, Bar-Yosef O (2007) The hearths at Kebara Cave and their role in site formation processes. In: Bar-Yosef O, Meignen L (eds) Kebara Cave, Mt. Carmel, Israel: the Middle and Upper Paleolithic archaeology. Part I. American School of Prehistoric Research, Peabody Museum, Harvard University, Cambridge, MA, pp 91–122Google Scholar
  56. Mellaart J (1966) Excavations at Çatal Höyük, 1965. Fourth preliminary report. Anatol Stud 16:165–191CrossRefGoogle Scholar
  57. Merkel J (1990) Experimental reconstruction of bronze age copper smelting based on archaeological evidence from Timna. In: Rothenberg B (ed) The ancient metallurgy of copper, Inst. Archaeo-Metall. Stud. University College, London, pp 78–122Google Scholar
  58. Montero Ruiz I, Ruíz Taboada A (1996) Enterramiento colectivo y metalurgia en el yacimiento Neolítico de Cerro Virtud (Cuevas de Almanzora, Almería). Trabajos de Prehist 53(2):55–75CrossRefGoogle Scholar
  59. Moorey PR (1994) Ancient Mesopotamian materials and industries. The archaeological evidence. Clarendon Press, OxfordGoogle Scholar
  60. Muhly JD (1991) The development of copper metallurgy in late bronze age Cyprus. In: Gale NH (ed) Bronze age trade in the Mediterranean, J Mediterran Archaeol, vol 90, pp 180–196Google Scholar
  61. Neuninger H, Pittioni R, Siegel W (1964) Frühkeramikzeitliche Kupfergewinnung in Anatolien. Arch Austriaca XXXV:98–110Google Scholar
  62. O’Brien W (2013) Bronze age copper mining in Europe. In: Fokkens H, Harding A (eds) Oxford handbook of the European bronze ageGoogle Scholar
  63. Özdoĝan M, Özdoĝan A (1999) Archaeological evidence on the early metallurgy at Çayönü Tepesi. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginning of metallurgy. Proc. Int. Conf. Bochum 1995, Der Anschnitt, Beih, vol 9, pp 13–22Google Scholar
  64. Ottaway BS (1994) Prähistorische Archäometallurgie. M Leidorf, EspelkampGoogle Scholar
  65. Pearce M (2015) The spread of early copper mining and metallurgy in Europe: an assessment of the diffusionist model. In: Hauptmann A, Modarressi-Tehrani D (eds) Archaeometallurgy in Europe III, pp 45–54Google Scholar
  66. Percy J (1861) Metallurgy: fuel, fire clays, copper, zinc, Brass. J Murray, LondonGoogle Scholar
  67. Pernicka E (1990) Gewinnung und Verbreitung der Metalle in prähistorischer Zeit. Jb Röm-German Zentralmus 37(1):21–129Google Scholar
  68. Pernicka E (1998) Die Ausbreitung der Zinnbronze im 3. Jahrtausend. In: Hänsel B (ed) Mensch und Umwelt in der Bronzezeit Europas. Oetker-Voges Verlag, Kiel, pp 135–147Google Scholar
  69. Pernicka E (2013) Die Ausbreitung der Metallurgie in der Alten welt. In: Bronzezeit (ed) Europa ohne Grenzen. 4.-1. Jahrtausend v. Chr. Ausstellungskatalog St. Petersburg, Moskau, Berlin. St. Petersburg publishing house, pp 66–78Google Scholar
  70. Pernicka E, Begemann F, Schmitt-Strecker S, Wagner GA (1993) Eneolithic and early bronze age copper artefacts from the Balkans and their relation to Serbian copper ores. Prähist Zeitschr 68:1–54CrossRefGoogle Scholar
  71. Pernicka E, Begemann F, Schmitt-Strecker S, Todorova H, Kuleff I (1997) Prehistoric copper in Bulgaria. Eurasia Antiqua 3:41–180Google Scholar
  72. Pigott VC (1999) The development of metal production on the Iranian plateau – an Archaeometallurgical perspective. In: Pigott VC (ed) The archaeometallurgy of the Asian old world, Univers Pennsylv Mus, pp 73–106Google Scholar
  73. Potts DT (1997) Mesopotamian civilization. The material foundations. Cornell University PressGoogle Scholar
  74. Radivojević M, Rehren T, Pernicka E, Šljivar D, Brauns M (2010) On the origins of extractive metallurgy: new evidence from Europe. J Archaeol Sci 37:2775–2787CrossRefGoogle Scholar
  75. Radivojević M, Rehren T, Kuzmanović-Cvetković J, Marija J, Peter N (2013) Tainted ores and the rise of tin bronzes in Eurasia, c. 6500 years ago. Antiquity 87:1030–1045CrossRefGoogle Scholar
  76. Radivojevic M et al (2017) Repealing the Çatalhöyük extractive metallurgy: the green, the fire and the ‘slag’. J Archaeol Sci 86:101–122. Scholar
  77. Ramage A, Craddock PT (2000) King Croesus’ gold. Excavations at Sardis and the history of gold refining. Brit Mus Press, LondonGoogle Scholar
  78. Renfrew C (1969) The autonomy of the south-east European copper age. Proc Prehist Soc 36:12–47Google Scholar
  79. Roberts BW, Thornton CP (2014) Archaeometallurgy in global perspective, Methods and syntheses. Springer, HeidelbergCrossRefGoogle Scholar
  80. Roberts BW, Thornton CP, Pigott VC (2009) Development of metallurgy in Eurasia. Antiquity 83:1012–1022CrossRefGoogle Scholar
  81. Roberts N (1998) The holocene. An environmental history. Blackwell Publ, OxfordGoogle Scholar
  82. Rovira S, Montero I (2003) Natural tin-bronze alloy in Iberian Peninsula metallurgy: potentiality and reality. In: Giumlia-Mair A, LoSchiavo F (eds) The problem of early tin, Brit Archaeol rec Int Ser 1199, pp 15–22Google Scholar
  83. Schalk E (1998) Die Entwicklung der prähistorischen Metallurgie im nördlichen Karpatenbecken. Eine typologische und metallanalytische Untersuchung. Internationale Archäologie. Naturwissenschaft und Technologie 1, M Leidorf, Rahden WestfGoogle Scholar
  84. Schiegl S (1997) Feuernutzung durch den Frühmenschen. In: Wagner GA, Beinhauer KW (eds) Homo heidelbergensis von Mauer. Das Auftreten des Menschen in Europa. Winter, Heidelberg, pp 298–303Google Scholar
  85. Schoop UD (1995) Die Geburt des Hephaistos. Technologie und Kulturgeschichte neolithischer Metallverwendung im Vorderen orient, Intern Archäol 24, Leidorf, Rahden, WestfalenGoogle Scholar
  86. Shalev S (1991) Two different copper industries in the chalcolithic culture of Israel. In: Mohen JP, Éluére C (eds) Découverte du Métal. Picard, Paris, pp 413–419Google Scholar
  87. Sperl G (1990) Urgeschichte des Bleis. Z Met 81:799–801Google Scholar
  88. Srejović D (1975) Lepenski Vir. Eine vorgeschichtliche Geburtsstätte europäischer Kultur. Gustav Lübbe PublGoogle Scholar
  89. Stöllner T (2008a) Mining landscapes in early societies – imprinting processes in pre- and protohistoric economies? In: Bartels C, Küppers-Eichas C (eds) Cultural Heritage and Landscapes in Europe. Proc Intern Conf Bochum 2007. Veröff. Deutsches Bergbau-Museum Bochum, vol 161, pp 65–92Google Scholar
  90. Stöllner T (2008b) Montan-archaeology and research on old mining: just a contribution to economic history? In: Yalçın Ü (ed) Anatolian metal IV, Der Anschnitt Beih, vol 21, pp 149–178Google Scholar
  91. Strahm C (1994) Die Anfänge der Metallurgie in Mitteleuropa. Helvetia Archaeol 25:2–39Google Scholar
  92. Strahm C (2007) L’introduction de la métallurgie en Europe. In: Guilaine J (ed) Le Chalcolithique et la Construction des Inegalités, Collection des Hesperides, pp 47–71Google Scholar
  93. Strahm C, Hauptmann (2009) The metallurgical developmental phases in the old world. In: Kienlin TL, Roberts BW (eds) Metals and societies studies in honour of Barbara S Ottaway, Univers Forsch Prähist Archäol, vol 169. Habelt, Bonn, pp 116–128Google Scholar
  94. Tadmor M, Kedem D, Begemann F, Hauptmann A, Pernicka E, Schmitt-Strecker S (1995) The Nahal Mishmar hoard from the Judean Desert: technology, composition, and provenance. Atiqot XXVII:95–148Google Scholar
  95. Thornton C (2009a) The emergence of complex metallurgy on the Iranian plateau: escaping the Levantine paradigm. J World Prehist 22:301–327CrossRefGoogle Scholar
  96. Thornton C (2009b) The chalcolithic and early bronze age metallurgy of Tepe Hissar, Northeast Iran: a challenge to the “Levantine paradigm”. PhD-diss Univers of PhiladelphiaGoogle Scholar
  97. Tubb KW (1985) Preliminary report on the Ain Ghazal statues. Mitt Deutsche Orientges 117:117–134Google Scholar
  98. Tylecote RF (1986) The prehistory of metallurgy in the British Isles. The Institute of Metals, LondonGoogle Scholar
  99. Tylecote RF, Austin JN, Wraith AE (1971) The mechanism of the Bloomery process. J Iron Steel Inst 5:342–363Google Scholar
  100. Vatandoust A, Parzinger H, Helwing B (2011) Early mining and metallurgy on the western central Iranian plateau. Report on the first five years research on the Joint Iranian-German Research Project Archäologie in Iran und Turan 9Google Scholar
  101. Weisgerber G (1979) Das römische Wasserheberad aus Rio Tinto in Spanien im British museum London. Der Anschnitt 2–3:62–79Google Scholar
  102. Weisgerber G, Pernicka E (1995) Ore mining in prehistoric Europe. In: Morteani G, Northover JP (eds) Prehistoric gold in Europe. Kluwer Academ Publ, pp 159–182Google Scholar
  103. Wertime TA (1967) A metallurgical expedition through the Persian Desert. In: Caldwell R (ed) Excavation at Tal-I Iblis, Illinois state museum, preliminary reports, vol 9, pp 327–339Google Scholar
  104. Wertime TA (1973) The beginnings of metallurgy: a new look. Science 182:875–887CrossRefGoogle Scholar
  105. Winkelmann H (1964) Altjapanischer Goldbergabu. Eisenhütte Westfalia, LünenGoogle Scholar
  106. Yalçın Ü (1998) Der Keulenkopf von can Hasan (TR). Naturwissenschaftliche Untersuchung und neue interpretation. In: Rehren T, Hauptmann A, Muhly JD (eds) Metallurgica Antiqua, In honour of Hans-Gert Bachmann and Robert Maddin. Der Anschnitt Beih, vol 8, pp 279–289Google Scholar
  107. Yalçın Ü (2000a) Anfänge der Metallverwendung in Anatolien. In: Yalçın Ü (ed) Anatolian metal I, Der Anschnitt Beih, vol 13, pp 17–30Google Scholar
  108. Yalçın Ü (2000b) Frühchalkolithische Metallfunde von Mersin-Yumuktepe: Beginn der extraktiven Metallurgie? Tüb-Ar III:109–128CrossRefGoogle Scholar
  109. Yalçın Ü (2017) The beginning of metal use in West Asia. In: Tsuneki A, Yamada S, Hisada K (eds) Ancient West Asian Civilisation. Geoenvironment and Society in the Pre-Islamic Middle East, Springer, pp 115–130Google Scholar
  110. Yalçın Ü, Pernicka E (1999) Frühneolithische Metallurgie von Aşıklı Höyük. In: Hauptmann A, Pernicka E, Rehren T, Yalçın Ü (eds) The beginnings of metallurgy. Proc Internat Conf “the beginnings of metallurgy”, Bochum 1995, Der Anschnitt Beih, vol 9, pp 45–54Google Scholar
  111. Yalçın Ü, Pulak C, Slotta R (2005) Das Schiff von Uluburun. Welthandel vor 3000 Jahren. Ausstellungskatalog Deutsches Bergbau-museum BochumGoogle Scholar
  112. Servelle C, Servelle G (1991) Premier mètal, ultime pierredans le Sud-Ouest de la France. In: Mohen JP, Eluère C (eds) Découverte du Metal. Paris, pp 229–250Google Scholar
  113. Hansen-Streily A (2000) Early pottery kilns in the Middle East. Paléorient 26(2):69–81CrossRefGoogle Scholar
  114. Pfaffenberger B (1992) Social anthropology and technology. Annu Rev Anthropol 21:491–516CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Hauptmann
    • 1
  1. 1.Haus der Archäologien, ArchaeometallurgyDeutsches Bergbau-Museum / Ruhr UniversityBochumGermany

Personalised recommendations